// Copyright 2020 Joshua J Baker. All rights reserved. // Use of this source code is governed by an MIT-style license that can be // found in the LICENSE file at https://github.com/tidwall/btree/LICENSE /////////////////////////////////////////////////////////////////////////////// // BEGIN PARAMS /////////////////////////////////////////////////////////////////////////////// package btree import "sync" // degree is the B-Tree degree, which is equal to maximum number of children // pre node times two. // The default is 128, which means each node can have 255 items and 256 child // nodes. const degree = 128 // kind is the item type. // It's important to use the equal symbol, which tells Go to create an alias of // the type, rather than creating an entirely new type. type kind = interface{} // contextKind is the kind of context that can be passed to NewOptions and the // less function type contextKind = interface{} // less returns true if A is less than B. // The value of context will be whatever was passed to NewOptions through the // Options.Context field, otherwise nil if the field was not set. func less(a, b kind, context contextKind) bool { return context.(func(a, b contextKind) bool)(a, b) } // BTree aliases // These are aliases to the local bTree types and functions, which are exported // to allow for public use at a package level. // Rename them if desired, or comment them out to make the library private. type BTree = bTree type Options = bOptions type PathHint = bPathHint type Iter = bIter func New(less func(a, b kind) bool) *bTree { return bNew() } func NewOptions(opts bOptions) *bTree { return bNewOptions(opts) } // The functions below, which begin with "test*", are required by the // btree_test.go file. If you choose not use include the btree_test.go file in // your project then these functions may be omitted. // testCustomSeed can be used to generate a custom random seed for testing. // Returning false will use time.Now().UnixNano() func testCustomSeed() (seed int64, ok bool) { return 0, false } // testMakeItem must return a valid item for testing. // It's required that the returned item maintains equal order as the // provided int, such that: // testMakeItem(0) < testMakeItem(1) < testMakeItem(2) < testMakeItem(10) func testMakeItem(x int) (item kind) { return x } // testNewBTree must return an operational btree for testing. func testNewBTree() *bTree { return bNewOptions(bOptions{ Context: func(a, b contextKind) bool { if a == nil { return b != nil } else if b == nil { return false } return a.(int) < b.(int) }, }) } /////////////////////////////////////////////////////////////////////////////// // END PARAMS /////////////////////////////////////////////////////////////////////////////// // Do not edit code below this line. const maxItems = degree*2 - 1 // max items per node. max children is +1 const minItems = maxItems / 2 type bTree struct { mu *sync.RWMutex cow *cow root *node count int ctx contextKind locks bool empty kind } type node struct { cow *cow count int items []kind children *[]*node } type cow struct { _ int // cannot be an empty struct } func (tr *bTree) newNode(leaf bool) *node { n := &node{cow: tr.cow} if !leaf { n.children = new([]*node) } return n } // leaf returns true if the node is a leaf. func (n *node) leaf() bool { return n.children == nil } // PathHint is a utility type used with the *Hint() functions. Hints provide // faster operations for clustered keys. type bPathHint struct { used [8]bool path [8]uint8 } type bOptions struct { NoLocks bool Context contextKind } // New returns a new BTree func bNew() *bTree { return bNewOptions(bOptions{}) } func bNewOptions(opts bOptions) *bTree { tr := new(bTree) tr.cow = new(cow) tr.mu = new(sync.RWMutex) tr.ctx = opts.Context tr.locks = !opts.NoLocks return tr } // Less is a convenience function that performs a comparison of two items // using the same "less" function provided to New. func (tr *bTree) Less(a, b kind) bool { return less(a, b, tr.ctx) } func (tr *bTree) find(n *node, key kind, hint *bPathHint, depth int, ) (index int, found bool) { if hint == nil { // fast path for no hinting low := 0 high := len(n.items) for low < high { mid := (low + high) / 2 if !tr.Less(key, n.items[mid]) { low = mid + 1 } else { high = mid } } if low > 0 && !tr.Less(n.items[low-1], key) { return low - 1, true } return low, false } // Try using hint. // Best case finds the exact match, updates the hint and returns. // Worst case, updates the low and high bounds to binary search between. low := 0 high := len(n.items) - 1 if depth < 8 && hint.used[depth] { index = int(hint.path[depth]) if index >= len(n.items) { // tail item if tr.Less(n.items[len(n.items)-1], key) { index = len(n.items) goto path_match } index = len(n.items) - 1 } if tr.Less(key, n.items[index]) { if index == 0 || tr.Less(n.items[index-1], key) { goto path_match } high = index - 1 } else if tr.Less(n.items[index], key) { low = index + 1 } else { found = true goto path_match } } // Do a binary search between low and high // keep on going until low > high, where the guarantee on low is that // key >= items[low - 1] for low <= high { mid := low + ((high+1)-low)/2 // if key >= n.items[mid], low = mid + 1 // which implies that key >= everything below low if !tr.Less(key, n.items[mid]) { low = mid + 1 } else { high = mid - 1 } } // if low > 0, n.items[low - 1] >= key, // we have from before that key >= n.items[low - 1] // therefore key = n.items[low - 1], // and we have found the entry for key. // Otherwise we must keep searching for the key in index `low`. if low > 0 && !tr.Less(n.items[low-1], key) { index = low - 1 found = true } else { index = low found = false } path_match: if depth < 8 { hint.used[depth] = true var pathIndex uint8 if n.leaf() && found { pathIndex = uint8(index + 1) } else { pathIndex = uint8(index) } if pathIndex != hint.path[depth] { hint.path[depth] = pathIndex for i := depth + 1; i < 8; i++ { hint.used[i] = false } } } return index, found } // SetHint sets or replace a value for a key using a path hint func (tr *bTree) SetHint(item kind, hint *bPathHint) (prev kind, replaced bool) { if tr.lock() { defer tr.unlock() } return tr.setHint(item, hint) } func (tr *bTree) setHint(item kind, hint *bPathHint) (prev kind, replaced bool) { if tr.root == nil { tr.root = tr.newNode(true) tr.root.items = append([]kind{}, item) tr.root.count = 1 tr.count = 1 return tr.empty, false } prev, replaced, split := tr.nodeSet(&tr.root, item, hint, 0) if split { left := tr.cowLoad(&tr.root) right, median := tr.nodeSplit(left) tr.root = tr.newNode(false) *tr.root.children = make([]*node, 0, maxItems+1) *tr.root.children = append([]*node{}, left, right) tr.root.items = append([]kind{}, median) tr.root.updateCount() return tr.setHint(item, hint) } if replaced { return prev, true } tr.count++ return tr.empty, false } // Set or replace a value for a key func (tr *bTree) Set(item kind) (kind, bool) { return tr.SetHint(item, nil) } func (tr *bTree) nodeSplit(n *node) (right *node, median kind) { i := maxItems / 2 median = n.items[i] // left node left := tr.newNode(n.leaf()) left.items = make([]kind, len(n.items[:i]), maxItems/2) copy(left.items, n.items[:i]) if !n.leaf() { *left.children = make([]*node, len((*n.children)[:i+1]), maxItems+1) copy(*left.children, (*n.children)[:i+1]) } left.updateCount() // right node right = tr.newNode(n.leaf()) right.items = make([]kind, len(n.items[i+1:]), maxItems/2) copy(right.items, n.items[i+1:]) if !n.leaf() { *right.children = make([]*node, len((*n.children)[i+1:]), maxItems+1) copy(*right.children, (*n.children)[i+1:]) } right.updateCount() *n = *left return right, median } func (n *node) updateCount() { n.count = len(n.items) if !n.leaf() { for i := 0; i < len(*n.children); i++ { n.count += (*n.children)[i].count } } } // This operation should not be inlined because it's expensive and rarely // called outside of heavy copy-on-write situations. Marking it "noinline" // allows for the parent cowLoad to be inlined. // go:noinline func (tr *bTree) copy(n *node) *node { n2 := new(node) n2.cow = tr.cow n2.count = n.count n2.items = make([]kind, len(n.items), cap(n.items)) copy(n2.items, n.items) if !n.leaf() { n2.children = new([]*node) *n2.children = make([]*node, len(*n.children), maxItems+1) copy(*n2.children, *n.children) } return n2 } // cowLoad loads the provided node and, if needed, performs a copy-on-write. func (tr *bTree) cowLoad(cn **node) *node { if (*cn).cow != tr.cow { *cn = tr.copy(*cn) } return *cn } func (tr *bTree) nodeSet(cn **node, item kind, hint *bPathHint, depth int, ) (prev kind, replaced bool, split bool) { n := tr.cowLoad(cn) i, found := tr.find(n, item, hint, depth) if found { prev = n.items[i] n.items[i] = item return prev, true, false } if n.leaf() { if len(n.items) == maxItems { return tr.empty, false, true } n.items = append(n.items, tr.empty) copy(n.items[i+1:], n.items[i:]) n.items[i] = item n.count++ return tr.empty, false, false } prev, replaced, split = tr.nodeSet(&(*n.children)[i], item, hint, depth+1) if split { if len(n.items) == maxItems { return tr.empty, false, true } right, median := tr.nodeSplit((*n.children)[i]) *n.children = append(*n.children, nil) copy((*n.children)[i+1:], (*n.children)[i:]) (*n.children)[i+1] = right n.items = append(n.items, tr.empty) copy(n.items[i+1:], n.items[i:]) n.items[i] = median return tr.nodeSet(&n, item, hint, depth) } if !replaced { n.count++ } return prev, replaced, false } func (tr *bTree) Scan(iter func(item kind) bool) { if tr.rlock() { defer tr.runlock() } if tr.root == nil { return } tr.root.scan(iter) } func (n *node) scan(iter func(item kind) bool) bool { if n.leaf() { for i := 0; i < len(n.items); i++ { if !iter(n.items[i]) { return false } } return true } for i := 0; i < len(n.items); i++ { if !(*n.children)[i].scan(iter) { return false } if !iter(n.items[i]) { return false } } return (*n.children)[len(*n.children)-1].scan(iter) } // Get a value for key func (tr *bTree) Get(key kind) (kind, bool) { return tr.GetHint(key, nil) } // GetHint gets a value for key using a path hint func (tr *bTree) GetHint(key kind, hint *bPathHint) (kind, bool) { if tr.rlock() { defer tr.runlock() } if tr.root == nil { return tr.empty, false } n := tr.root depth := 0 for { i, found := tr.find(n, key, hint, depth) if found { return n.items[i], true } if n.children == nil { return tr.empty, false } n = (*n.children)[i] depth++ } } // Len returns the number of items in the tree func (tr *bTree) Len() int { return tr.count } // Delete a value for a key func (tr *bTree) Delete(key kind) (kind, bool) { return tr.DeleteHint(key, nil) } // DeleteHint deletes a value for a key using a path hint func (tr *bTree) DeleteHint(key kind, hint *bPathHint) (kind, bool) { if tr.lock() { defer tr.unlock() } return tr.deleteHint(key, hint) } func (tr *bTree) deleteHint(key kind, hint *bPathHint) (kind, bool) { if tr.root == nil { return tr.empty, false } prev, deleted := tr.delete(&tr.root, false, key, hint, 0) if !deleted { return tr.empty, false } if len(tr.root.items) == 0 && !tr.root.leaf() { tr.root = (*tr.root.children)[0] } tr.count-- if tr.count == 0 { tr.root = nil } return prev, true } func (tr *bTree) delete(cn **node, max bool, key kind, hint *bPathHint, depth int, ) (kind, bool) { n := tr.cowLoad(cn) var i int var found bool if max { i, found = len(n.items)-1, true } else { i, found = tr.find(n, key, hint, depth) } if n.leaf() { if found { // found the items at the leaf, remove it and return. prev := n.items[i] copy(n.items[i:], n.items[i+1:]) n.items[len(n.items)-1] = tr.empty n.items = n.items[:len(n.items)-1] n.count-- return prev, true } return tr.empty, false } var prev kind var deleted bool if found { if max { i++ prev, deleted = tr.delete(&(*n.children)[i], true, tr.empty, nil, 0) } else { prev = n.items[i] maxItem, _ := tr.delete(&(*n.children)[i], true, tr.empty, nil, 0) deleted = true n.items[i] = maxItem } } else { prev, deleted = tr.delete(&(*n.children)[i], max, key, hint, depth+1) } if !deleted { return tr.empty, false } n.count-- if len((*n.children)[i].items) < minItems { tr.nodeRebalance(n, i) } return prev, true } // nodeRebalance rebalances the child nodes following a delete operation. // Provide the index of the child node with the number of items that fell // below minItems. func (tr *bTree) nodeRebalance(n *node, i int) { if i == len(n.items) { i-- } // ensure copy-on-write left := tr.cowLoad(&(*n.children)[i]) right := tr.cowLoad(&(*n.children)[i+1]) if len(left.items)+len(right.items) < maxItems { // Merges the left and right children nodes together as a single node // that includes (left,item,right), and places the contents into the // existing left node. Delete the right node altogether and move the // following items and child nodes to the left by one slot. // merge (left,item,right) left.items = append(left.items, n.items[i]) left.items = append(left.items, right.items...) if !left.leaf() { *left.children = append(*left.children, *right.children...) } left.count += right.count + 1 // move the items over one slot copy(n.items[i:], n.items[i+1:]) n.items[len(n.items)-1] = tr.empty n.items = n.items[:len(n.items)-1] // move the children over one slot copy((*n.children)[i+1:], (*n.children)[i+2:]) (*n.children)[len(*n.children)-1] = nil (*n.children) = (*n.children)[:len(*n.children)-1] } else if len(left.items) > len(right.items) { // move left -> right over one slot // Move the item of the parent node at index into the right-node first // slot, and move the left-node last item into the previously moved // parent item slot. right.items = append(right.items, tr.empty) copy(right.items[1:], right.items) right.items[0] = n.items[i] right.count++ n.items[i] = left.items[len(left.items)-1] left.items[len(left.items)-1] = tr.empty left.items = left.items[:len(left.items)-1] left.count-- if !left.leaf() { // move the left-node last child into the right-node first slot *right.children = append(*right.children, nil) copy((*right.children)[1:], *right.children) (*right.children)[0] = (*left.children)[len(*left.children)-1] (*left.children)[len(*left.children)-1] = nil (*left.children) = (*left.children)[:len(*left.children)-1] left.count -= (*right.children)[0].count right.count += (*right.children)[0].count } } else { // move left <- right over one slot // Same as above but the other direction left.items = append(left.items, n.items[i]) left.count++ n.items[i] = right.items[0] copy(right.items, right.items[1:]) right.items[len(right.items)-1] = tr.empty right.items = right.items[:len(right.items)-1] right.count-- if !left.leaf() { *left.children = append(*left.children, (*right.children)[0]) copy(*right.children, (*right.children)[1:]) (*right.children)[len(*right.children)-1] = nil *right.children = (*right.children)[:len(*right.children)-1] left.count += (*left.children)[len(*left.children)-1].count right.count -= (*left.children)[len(*left.children)-1].count } } } // Ascend the tree within the range [pivot, last] // Pass nil for pivot to scan all item in ascending order // Return false to stop iterating func (tr *bTree) Ascend(pivot kind, iter func(item kind) bool) { if tr.rlock() { defer tr.runlock() } if tr.root == nil { return } tr.ascend(tr.root, pivot, nil, 0, iter) } // The return value of this function determines whether we should keep iterating // upon this functions return. func (tr *bTree) ascend(n *node, pivot kind, hint *bPathHint, depth int, iter func(item kind) bool, ) bool { i, found := tr.find(n, pivot, hint, depth) if !found { if !n.leaf() { if !tr.ascend((*n.children)[i], pivot, hint, depth+1, iter) { return false } } } // We are either in the case that // - node is found, we should iterate through it starting at `i`, // the index it was located at. // - node is not found, and TODO: fill in. for ; i < len(n.items); i++ { if !iter(n.items[i]) { return false } if !n.leaf() { if !(*n.children)[i+1].scan(iter) { return false } } } return true } func (tr *bTree) Reverse(iter func(item kind) bool) { if tr.rlock() { defer tr.runlock() } if tr.root == nil { return } tr.root.reverse(iter) } func (n *node) reverse(iter func(item kind) bool) bool { if n.leaf() { for i := len(n.items) - 1; i >= 0; i-- { if !iter(n.items[i]) { return false } } return true } if !(*n.children)[len(*n.children)-1].reverse(iter) { return false } for i := len(n.items) - 1; i >= 0; i-- { if !iter(n.items[i]) { return false } if !(*n.children)[i].reverse(iter) { return false } } return true } // Descend the tree within the range [pivot, first] // Pass nil for pivot to scan all item in descending order // Return false to stop iterating func (tr *bTree) Descend(pivot kind, iter func(item kind) bool) { if tr.rlock() { defer tr.runlock() } if tr.root == nil { return } tr.descend(tr.root, pivot, nil, 0, iter) } func (tr *bTree) descend(n *node, pivot kind, hint *bPathHint, depth int, iter func(item kind) bool, ) bool { i, found := tr.find(n, pivot, hint, depth) if !found { if !n.leaf() { if !tr.descend((*n.children)[i], pivot, hint, depth+1, iter) { return false } } i-- } for ; i >= 0; i-- { if !iter(n.items[i]) { return false } if !n.leaf() { if !(*n.children)[i].reverse(iter) { return false } } } return true } // Load is for bulk loading pre-sorted items func (tr *bTree) Load(item kind) (kind, bool) { if tr.lock() { defer tr.unlock() } if tr.root == nil { return tr.setHint(item, nil) } n := tr.cowLoad(&tr.root) for { n.count++ // optimistically update counts if n.leaf() { if len(n.items) < maxItems { if tr.Less(n.items[len(n.items)-1], item) { n.items = append(n.items, item) tr.count++ return tr.empty, false } } break } n = tr.cowLoad(&(*n.children)[len(*n.children)-1]) } // revert the counts n = tr.root for { n.count-- if n.leaf() { break } n = (*n.children)[len(*n.children)-1] } return tr.setHint(item, nil) } // Min returns the minimum item in tree. // Returns nil if the tree has no items. func (tr *bTree) Min() (kind, bool) { if tr.rlock() { defer tr.runlock() } if tr.root == nil { return tr.empty, false } n := tr.root for { if n.leaf() { return n.items[0], true } n = (*n.children)[0] } } // Max returns the maximum item in tree. // Returns nil if the tree has no items. func (tr *bTree) Max() (kind, bool) { if tr.rlock() { defer tr.runlock() } if tr.root == nil { return tr.empty, false } n := tr.root for { if n.leaf() { return n.items[len(n.items)-1], true } n = (*n.children)[len(*n.children)-1] } } // PopMin removes the minimum item in tree and returns it. // Returns nil if the tree has no items. func (tr *bTree) PopMin() (kind, bool) { if tr.lock() { defer tr.unlock() } if tr.root == nil { return tr.empty, false } n := tr.cowLoad(&tr.root) var item kind for { n.count-- // optimistically update counts if n.leaf() { item = n.items[0] if len(n.items) == minItems { break } copy(n.items[:], n.items[1:]) n.items[len(n.items)-1] = tr.empty n.items = n.items[:len(n.items)-1] tr.count-- if tr.count == 0 { tr.root = nil } return item, true } n = tr.cowLoad(&(*n.children)[0]) } // revert the counts n = tr.root for { n.count++ if n.leaf() { break } n = (*n.children)[0] } return tr.deleteHint(item, nil) } // PopMax removes the minimum item in tree and returns it. // Returns nil if the tree has no items. func (tr *bTree) PopMax() (kind, bool) { if tr.lock() { defer tr.unlock() } if tr.root == nil { return tr.empty, false } n := tr.cowLoad(&tr.root) var item kind for { n.count-- // optimistically update counts if n.leaf() { item = n.items[len(n.items)-1] if len(n.items) == minItems { break } n.items[len(n.items)-1] = tr.empty n.items = n.items[:len(n.items)-1] tr.count-- if tr.count == 0 { tr.root = nil } return item, true } n = tr.cowLoad(&(*n.children)[len(*n.children)-1]) } // revert the counts n = tr.root for { n.count++ if n.leaf() { break } n = (*n.children)[len(*n.children)-1] } return tr.deleteHint(item, nil) } // GetAt returns the value at index. // Return nil if the tree is empty or the index is out of bounds. func (tr *bTree) GetAt(index int) (kind, bool) { if tr.rlock() { defer tr.runlock() } if tr.root == nil || index < 0 || index >= tr.count { return tr.empty, false } n := tr.root for { if n.leaf() { return n.items[index], true } i := 0 for ; i < len(n.items); i++ { if index < (*n.children)[i].count { break } else if index == (*n.children)[i].count { return n.items[i], true } index -= (*n.children)[i].count + 1 } n = (*n.children)[i] } } // DeleteAt deletes the item at index. // Return nil if the tree is empty or the index is out of bounds. func (tr *bTree) DeleteAt(index int) (kind, bool) { if tr.lock() { defer tr.unlock() } if tr.root == nil || index < 0 || index >= tr.count { return tr.empty, false } var pathbuf [8]uint8 // track the path path := pathbuf[:0] var item kind n := tr.cowLoad(&tr.root) outer: for { n.count-- // optimistically update counts if n.leaf() { // the index is the item position item = n.items[index] if len(n.items) == minItems { path = append(path, uint8(index)) break outer } copy(n.items[index:], n.items[index+1:]) n.items[len(n.items)-1] = tr.empty n.items = n.items[:len(n.items)-1] tr.count-- if tr.count == 0 { tr.root = nil } return item, true } i := 0 for ; i < len(n.items); i++ { if index < (*n.children)[i].count { break } else if index == (*n.children)[i].count { item = n.items[i] path = append(path, uint8(i)) break outer } index -= (*n.children)[i].count + 1 } path = append(path, uint8(i)) n = tr.cowLoad(&(*n.children)[i]) } // revert the counts var hint bPathHint n = tr.root for i := 0; i < len(path); i++ { if i < len(hint.path) { hint.path[i] = uint8(path[i]) hint.used[i] = true } n.count++ if !n.leaf() { n = (*n.children)[uint8(path[i])] } } return tr.deleteHint(item, &hint) } // Height returns the height of the tree. // Returns zero if tree has no items. func (tr *bTree) Height() int { if tr.rlock() { defer tr.runlock() } var height int if tr.root != nil { n := tr.root for { height++ if n.leaf() { break } n = (*n.children)[0] } } return height } // Walk iterates over all items in tree, in order. // The items param will contain one or more items. func (tr *bTree) Walk(iter func(item []kind) bool) { if tr.rlock() { defer tr.runlock() } if tr.root != nil { tr.root.walk(iter) } } func (n *node) walk(iter func(item []kind) bool) bool { if n.leaf() { if !iter(n.items) { return false } } else { for i := 0; i < len(n.items); i++ { (*n.children)[i].walk(iter) if !iter(n.items[i : i+1]) { return false } } (*n.children)[len(n.items)].walk(iter) } return true } // Copy the tree. This is a copy-on-write operation and is very fast because // it only performs a shadowed copy. func (tr *bTree) Copy() *bTree { if tr.lock() { defer tr.unlock() } tr.cow = new(cow) tr2 := new(bTree) *tr2 = *tr tr2.mu = new(sync.RWMutex) tr2.cow = new(cow) return tr2 } func (tr *bTree) lock() bool { if tr.locks { tr.mu.Lock() } return tr.locks } func (tr *bTree) unlock() { tr.mu.Unlock() } func (tr *bTree) rlock() bool { if tr.locks { tr.mu.RLock() } return tr.locks } func (tr *bTree) runlock() { tr.mu.RUnlock() } // Iter represents an iterator type bIter struct { tr *bTree locked bool seeked bool atstart bool atend bool stack []iterStackItem item kind } type iterStackItem struct { n *node i int } // Iter returns a read-only iterator. // The Release method must be called finished with iterator. func (tr *bTree) Iter() bIter { var iter bIter iter.tr = tr iter.locked = tr.rlock() return iter } // Seek to item greater-or-equal-to key. // Returns false if there was no item found. func (iter *bIter) Seek(key kind) bool { if iter.tr == nil { return false } iter.seeked = true iter.stack = iter.stack[:0] if iter.tr.root == nil { return false } n := iter.tr.root for { i, found := iter.tr.find(n, key, nil, 0) iter.stack = append(iter.stack, iterStackItem{n, i}) if found { return true } if n.leaf() { if i == len(n.items) { iter.stack = iter.stack[:0] return false } return true } n = (*n.children)[i] } } // First moves iterator to first item in tree. // Returns false if the tree is empty. func (iter *bIter) First() bool { if iter.tr == nil { return false } iter.atend = false iter.atstart = false iter.seeked = true iter.stack = iter.stack[:0] if iter.tr.root == nil { return false } n := iter.tr.root for { iter.stack = append(iter.stack, iterStackItem{n, 0}) if n.leaf() { break } n = (*n.children)[0] } s := &iter.stack[len(iter.stack)-1] iter.item = s.n.items[s.i] return true } // Last moves iterator to last item in tree. // Returns false if the tree is empty. func (iter *bIter) Last() bool { if iter.tr == nil { return false } iter.seeked = true iter.stack = iter.stack[:0] if iter.tr.root == nil { return false } n := iter.tr.root for { iter.stack = append(iter.stack, iterStackItem{n, len(n.items)}) if n.leaf() { iter.stack[len(iter.stack)-1].i-- break } n = (*n.children)[len(n.items)] } s := &iter.stack[len(iter.stack)-1] iter.item = s.n.items[s.i] return true } // First moves iterator to first item in tree. // Returns false if the tree is empty. func (iter *bIter) Release() { if iter.tr == nil { return } if iter.locked { iter.tr.runlock() iter.locked = false } iter.stack = nil iter.tr = nil } // Next moves iterator to the next item in iterator. // Returns false if the tree is empty or the iterator is at the end of // the tree. func (iter *bIter) Next() bool { if iter.tr == nil { return false } if !iter.seeked { return iter.First() } if len(iter.stack) == 0 { if iter.atstart { return iter.First() && iter.Next() } return false } s := &iter.stack[len(iter.stack)-1] s.i++ if s.n.leaf() { if s.i == len(s.n.items) { for { iter.stack = iter.stack[:len(iter.stack)-1] if len(iter.stack) == 0 { iter.atend = true return false } s = &iter.stack[len(iter.stack)-1] if s.i < len(s.n.items) { break } } } } else { n := (*s.n.children)[s.i] for { iter.stack = append(iter.stack, iterStackItem{n, 0}) if n.leaf() { break } n = (*n.children)[0] } } s = &iter.stack[len(iter.stack)-1] iter.item = s.n.items[s.i] return true } // Prev moves iterator to the previous item in iterator. // Returns false if the tree is empty or the iterator is at the beginning of // the tree. func (iter *bIter) Prev() bool { if iter.tr == nil { return false } if !iter.seeked { return false } if len(iter.stack) == 0 { if iter.atend { return iter.Last() && iter.Prev() } return false } s := &iter.stack[len(iter.stack)-1] if s.n.leaf() { s.i-- if s.i == -1 { for { iter.stack = iter.stack[:len(iter.stack)-1] if len(iter.stack) == 0 { iter.atstart = true return false } s = &iter.stack[len(iter.stack)-1] s.i-- if s.i > -1 { break } } } } else { n := (*s.n.children)[s.i] for { iter.stack = append(iter.stack, iterStackItem{n, len(n.items)}) if n.leaf() { iter.stack[len(iter.stack)-1].i-- break } n = (*n.children)[len(n.items)] } } s = &iter.stack[len(iter.stack)-1] iter.item = s.n.items[s.i] return true } // Item returns the current iterator item. func (iter *bIter) Item() kind { return iter.item }