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Part 1

Background

Context- or Activity-Aware devices is an area currently under lots of research.
There are many and varied applications of activity-aware devices, ranging from
personal fitness and healthcare to training factory workers or merely playing
music.

While this research is going on, there has been a huge expansion in the owner-
ship, use and power of mobile telephones. Mobile telephones are so ubiquitous
and now come with such a large sensor platform that they are the obvious choice
for implementing activity-aware technologies for use in day-to-day life.

This project aims to make a context-aware API available on an open mobile plat-
form, which will enable developers to start adding context-aware functionality
to their applications without the extremely large overhead of writing a logger
and classifier themselves, or re-engineering the application to use an existing
context-aware framework if one is available.

1 Applications

There are many documented applications of activity-aware systems, and current
research efforts which bring the technology to mobile telephones will only serve
to lengthen this list.

The canonical example for activity-awareness, especially on mobile telephones,
is modeling the user’s “interruptibility”[30, 24]. This allows the software to know
whether it’s appropriate (or "polite") to disturb the user, and can advise the
user’s contacts when they are busy. It can also be used to create a “smart an-
swering machine” [16] which can selectively direct calls straight to an answering
machine if the user is engaged in an "uninterpretable" activity and the call does
not appear to be important. These allow the user’s mobile telephone to bet-
ter approximate human behaviour - when approaching someone in person it is
normally quite easy to determine whether it would be polite or necessary to dis-
turb them, based on their demeanour, activity, and the urgency of your request;
when picking up the telephone it is not possible at all without assistance from
an activity-aware system.

The current implementations of these ideas have several problems, however.
The more interesting research [16] requires a static camera fixed in an office
to observe user behaviour, instead of implementing it directly on a telephone,
which obviously constrains its usefulness. Of the two solutions actually targeted
at mobile telephones, one[30] requires bulky custom hardware which the user
must carry on their belt, and the other [24]does not expose an API to other
applications and only surfaces the context-aware functionality in two small ap-
plications whose focus is on social interaction rather than improving the user’s
experience of the telephone locally. This project will aim to bring the ideas of
these to generic hardware (an Android mobile telephone), and to provide an
API which other applications can harness.



One use particularly suitable for mobile phones is dynamic adaptation of the
device’s settings based on the user’s current activity and context[27]. When a
user is walking the device can dynamically increase the font size to make it easier
to read with an unsteady hand, and correspondingly decrease it when the user
is stationary. In a similar fashion, the brightness of the backlight can be altered
based on the ambient light level, and the ringer volume altered according to the
noise level. Unfortunately this research did not progress beyond a feasibility
study and was implemented on a Nokia 6110, which is severely outdated by
today’s standards.

Another popular area for activity-aware systems is in healthcare. Such systems
can be used to monitor vulnerable people as they go about day to day activities
to ensure that they’re not in trouble - several systems[31, 20] can be used to
monitor elderly persons and summon help if it is detected that they have fallen.
Another healthcare application[33] allows nurses to remotely monitor the activ-
ities of their patients in a hospital ward, allowing them to respond to problems
and keep up-to-date with their patients’ well-being while not physically present.
Activity-aware applications have also been used to try to encourage users to be
more healthy; one novel application records the day-to-day fitness activities a
user performs and uses this as a basis for a virtual “garden” that blossoms or
wilts according to how much the user works out in a week|[9].

As well as monitoring activities which the user is familiar with, activity-aware
systems can also be used to assist users in learning new activities. One application[32]
monitors the activities of trainee workers in a car manufacturing plant, and
helps to provide a link between theoretical classroom-based training and prac-
tical work. The activity-aware system can offer advice to the workers that’s
directly related to the current task they’re performing, and can even monitor
their activities for compliance with procedures and give them a score afterwards.

While the research into healthcare and training applications present novel uses
of activity-aware systems, the applications themselves are not really applicable
to a mobile device or the scope of this project. The research does, however,
describe the techniques used in those applications for activity classification and
should prove useful in that respect.

Other areas of research include making activity-aware suggestions to the user
[6], or issuing reminders or alerts based on the user’s activity [26]. One example
of the latter is an activity-aware system that detects when the user is making
coffee, and plays a sound on a remote computer to alert thirsty coworkers to
the fact. Sound isn’t only limited to alerts, however: the XPOD[10] project
is an activity-aware music player, which tailors the music being played to the
user’s current activity based on their past ratings. This type of activity-aware
device presents a much greater level of personalisation than previously possible,
and making this type of customisation available to mobile telephone users and
application developers will surely result in many new applications.

2 Inferring activity

There are three general phases in most context-aware systems: a sensing compo-
nent, which reads or receives raw sensor data relating to the user’s environment



or activity; a feature extraction component, which analysis the sensor data and
identifies a set of features from that data; and a classification component, which
uses the extracted features to reason about the user’s activity[8]. Each of these
components will be expanded on below. Depending on the method of classi-
fication, some initial or continuous training may be required, and this is also
considered below.

2.1 Sensors and devices

At the basis of activity-recognition are the physical hardware sensors. The most
commonly used sensor is the accelerometer, which outputs the acceleration of the
sensor® along a certain axis. There is extensive research on using accelerometers
to classify activities such as walking [19, 12] (including whether or not the
subject is walking on flat ground or up and down stairs [7]), running [12], falling
[19], sitting [19, 12], cycling [12], etc.

Accelerometers can be combined with magnetic field sensors to convert the
relative acceleration of the device into an absolute acceleration with respect
to the Earth. This is particularly important when the sensor platform - a
mobile telephone - can be oriented in different ways while performing the same
activity. There are, for example, four different ways to comfortably fit a typical
smartphone into a trouser pocket, made up of two possible orientations around
two axis 2. With just raw accelerometer data these four orientations would lead
to different data for the same activity, but with the combination of magnetic
field sensors we can normalise them.

Smartphones also come equipped with a microphone and GSM stack (prerequi-
sites for a telephone conversation!), and commonly a camera, geolocation API
(usually backed by GPS) and Bluetooth stack. With the exception of the latter
two, these types of sensors are not particularly well explored for their use in
context-aware systems at present. It is easy to reason how each would be useful
- a microphone can reveal the ambient noise, which could indicate the differ-
ence between sitting in a library and a bar; the camera likewise can reveal the
lighting conditions (if the device is not in a pocket or bag). The GSM stack can
provide rough location information and also a signal strength to one or more
cell towers; the signal strength will vary both with the user’s proximity to the
cell tower and the environment around them - being inside will degrade the
signal more than being in open air, for example - so may provide vital clues to
a context-aware system. One aspect of this project will be to research how the
microphone, camera and GSM stack can be used to enhance existing activity
classification algorithms.

Current research on location information and Bluetooth device proximity is
summarised in section 4 (p12) and 5 (p12) respectively.

Tand thus the device to which it’s attached, and therefore the person using the device
2screen facing towards or away from the body, and the device oriented the right way up or
upside down



2.2 Feature detection

It is not possible to reason directly about raw sensor inputs, so the next step
in inferring activities is to extract useful features from the raw input. Features
are usually mathematical properties of the input data, such as the difference
between the minimum and maximum data point in a given time frame. Most
classifiers use an extremely large number of features - [14] detect 562 different
features from their inputs.

Some of the more commonly used features in activity-recognition systems are:
mean, standard deviation, energy, entropy, correlation between axis, and dis-
crete FFT coefficients[17]. Obviously, not all features are of equal value. FFT
coefficients are generally very good indicators of activity, but the ideal coef-
ficients and window sizes vary depending on the exact activity that is being
detected. Likewise, the choice of other features to give the best recognition rate
varies depending on the activity being detected[17].

As the sensor data is received continuously, it needs to be partitioned somehow
before features are extracted. Most implementations use a sliding window ap-
proach with a 50% overlap between windows[4]. A window size of 10 seconds
with a 50% overlap would result in one set of features being computed every 5
seconds. The window size is normally selected to correspond to a pre-defined
number of samples to enable fast computation of certain features - most notably
FFTs[4].

One challenge will be determining a set of features that are robust enough
to perform activity analysis on, but are sufficiently inexpensive to calculate
continually on a mobile device, where CPU speed is limited and excessive usage
results in undesirable higher battery consumption.

2.3 Training

In order to meaningfully classify and label activities, some kind of training
generally needs to be performed beforehand. The choice of classifier affects how
much offline analysis has to be done on the training set, and whether or not it
can be adapted at run-time.

One might expect that training would best be performed in a controlled envi-
ronment, to reduce external influences on the user, but subjects in a laboratory
setting are much more self-conscious about their movements, and this manifests
itself in the data collected. Walking in a laboratory tends to produce accel-
eration data showing a consistent gait cycle which can be split into distinct
phases, whereas walking in an uncontrolled setting produces data showing large
fluctuations in gait phases and length. This means that classifiers trained on
laboratory data may achieve a much lower accuracy when deployed in natural
conditions[4].



2.4 Classification

The classification step involves feeding the features for frame into some kind of
machine learning algorithm which can, using training data®, determine which
activity the feature-set most like represents. There are many different algorithms
that can be used to perform the classification, some of which are discussed below.

2.4.1 Decision trees

Decision trees are possibly one of the simplest approaches possible[16]. A tree
is constructed such that each node contains a test function, with branches for
each possible discrete outcome of the function. This allows data to be classified
with a “divide and conquer” approach. While high accuracy is possible in some
circumstances|16], there are several drawbacks to decision trees: a plain decision
tree has no way to model uncertainty - in an activity-aware system there will
always be a degree of uncertainty as to the classification, and being able to mea-
sure this is an important tool. They also have an inductive bias which leads to
a preference for the most general solution, and in most cases this generalisation
causes many false results[29].

Decision trees require the structure of the tree and the test functions for each
node to be determined during training. They do not lend themselves to minor
on-the-fly modifications or new activities that are not part of the training set.

2.4.2 Neural networks

Neural networks are based on an extremely simplified model of the brain. The
network consists of layers of neurons, and each neuron performs a simple arith-
metic operation on its inputs. This normally consists of taking each of its
inputs, multiplying it by a weight, and then summing all of the weighted inputs
together; the resulting figure then becomes the neuron’s output, and the input
to one or more nodes in the next layer.

A network consists of a layer of input neurons, a layer containing one or more
output neurons, and one or more layers of “hidden” neurons in between. The
number of “hidden” layers, and the number of neurons within those layers must
be chosen before training of the network begins. The training process will then
determine the weights for each link in the network. The choice of number of
layers poses a problem when designing a network, as too small a number can
cripple the power of the network, but too large can cause it to be too expensive
to evaluate and can possibly lead to it memorising erroneous data[10].

Neural networks, however, do provide good accuracy and could potentially (al-
though not easily) be modified on-the-fly to cope with new activities.

2.4.3 Genetic algorithms

Genetic algorithms use the principle of natural selection to ’evolve’ a solution
to a problem. A set of random solutions are created, and a pre-defined fitness

3and any offline analysis made of that data



function is used to determine their relative worth. The best solutions are then
combined together to produce the next generation of solutions, in a manner
roughly analogous to reproduction in animals. Small “mutations” are also intro-
duced into each generation to counter the effect of local maxima being reached.

Genetic algorithms can be combined with other techniques such as neural net-
works - the weights in the neural network can be “evolved” using genetic algo-
rithms to create a neural network which is good as satisfying the fitness function.

The drawback of genetic algorithms is the need for a fitness function - the
network will only ever be as good as the fitness function, and if you have a way
to define what makes a good network you could in most cases hardcode the
solution instead of evolving a network to satisfy it.

2.4.4 Instance-based learning

Instance-based learning (IBL)[35] algorithms are a class of “lazy” algorithms.
They perform classification based on previously observed instances that have
already been classified. There is no training required for IBLs, they’re extremely
adept at adapting to new scenarios, and they have a very low error rate[10] which
makes them ideal for activity-recognition.

One particular type of IBL algorithm which is frequently seen in activity-aware
research is the K-Nearest Neighbour (KNN) algorithm[13]. With the KNN
algorithm, each sample is treated as a vector, and the distance! between the
sample and the existing instances is calculated. The sample is then classified
according to the classification of the majority of its k& nearest neighbours.

One drawback of IBLs is that each new instance tends to be remembered for
future use, which eventually results in large amounts of memory consumption
and complexity when comparing distances of new samples. This can be partially
overcome by only storing instances which would affect the classification of new
samples[35].

The KNN algorithm can be easily extended to support dynamic classification of
new types of activities - if a sample is not within a certain distance of sufficient
other samples, it can be classified as a new type of activity.

2.4.5 Conclusion

There are numerous machine learning algorithms available and suitable for use
in activity classification tasks. There has been a lot of research into their use,
and all of the algorithms discussed have produced good results. Because of
the lack of need for any training, however, the K-Nearest Neighbour algorithm
appears to be the most promising for a mobile device. Any algorithm that
needs explicit training prior to classification would almost certainly require a
desktop application or a remote service to analyse the data, as it typically
requires large amounts of memory and expensive computations. This either
makes the application extremely cumbersome for the user (they have to connect

4the euclidean distance is usually used, but any metric will suffice



their phone to a computer, transfer a file, obtain and run a separate application,
then transfer some file back), or puts a large resource burden onto the distributor
(having to remotely analyse all of the data from all users would require dedicated
hardware for any more than a few users).

3 Mobile telephones

It’s hard to overstate the ubiquity of mobile telephones at present. In 2003,
over a billion mobile telephones were sold - six times as many as the number
of personal computers[11]. In 2007, this same figure describes the number of
cameraphones sold[25], clearly representing a substantial growth in sales and ad-
vancements in the technology. In fact, mobile telephones are the fastest adopted
technology in human history[11]. This ubiquity, coupled with the fact that mo-
bile telephones are comfortably carried around on a daily basis by most of their
users, makes them a very attractive alternative to more traditional platforms
used for activity-aware research, which typically involved bulky or inconvenient
apparatus that was expensive to manufacture[28] and made users very self-
conscious.

3.1 1iPhone

There have been several published works related to activity-recognition on the
iPhone. The similarity between iPhone and Android platforms means that many
of the concepts developed for or used on the iPhone are applicable to both.

3.1.1 iLearn

ILEARN[28] is a suite of three tools - ILOG, IMODEL, and ICLASSIFY - which
together allow for real-time classification of low-level activities. 1LOG is run
on the user’s iPhone and allows the user to specify which activity they will be
performing. The application then records raw sensor data from the iPhone’s
three-axis accelerometer and 124 features computed from this data in real-time.
The data is then stored on the device, annotated with the selected activity.

The training data collected by ILOG is then transferred to a desktop computer
where IMODEL uses a Naive Bayesian Network (NBN) to create a model which
can be used to classify future input. The choice of NBNs was based on their
ability to classify a set of trial data correctly, and the low computational cost
of classifying data once the model has been generated.

Once the model has been created, it is transferred back to the device where it
is used by 1CLASSIFY. This provides an API for other applications, and allows
them to register for a callback which it publishes the user’s current activity to
every second.

Unfortunately, neither the source code nor the API are published. The inability
to run background processes on the iPhone suggests that any “API” would have
to be more like a framework where the third-party developer has to re-engineer
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their application to use the ICLASSIFY application as a base. This is undesir-
able as it makes it extremely difficult to adapt existing applications to use the
activity-aware API, and is a very cumbersome way of providing what could be
a very minor piece of functionality for the application.

3.1.2 Evaluation

[21] present an evaluation of the iPhone for use in “people-centric sensing appli-
cations”. One of the major drawbacks highlighted is that the iPhone does not
support applications which run in the background. This means that any appli-
cation wishing to perform continuous real-time activity detection would need to
run as a foreground process, preventing the user from using the device for any
other function.

The research also shows that the computational compatibility of the iPhone is
more than sufficient to perform the necessary calculations for a typical activity-
recognising application, which suggests that any modern smart phone would be
capable of these.

3.2 Android

While the Android platform is relatively new, it is rapidly gaining market share
on the more established mobile operating systems. A December 2009 survey|[1]
shows that 21% of respondents want their next smartphone purchase to run
Android, a 350% increase from the same survey conducted three months prior.
This is compared to the iPhone, which dropped 4% to 28% in the same time
period. Gartner, a respected IT research firm, predicts that by 2012, Android
will be the second most popular mobile operating system globally|[2].

In addition to its rapidly increasing popularity, the Android platform offers
several advantages over the iPhone platform. Most notably is the ability to run
background processes (called SERVICES), which will allow a classifier application
to run without interfering with the user’s normal use of their mobile telephone.
In addition, the Android OS provides access to the Bluetooth and GSM stacks,
allowing for data from both to be used for activity detection.

The ability to run a background process will enable a proper API for sharing
activity data with other applications, which will allow third-party developers to
make their applications context-aware with relatively little work on their part.
This is extremely desirable as it will allow rapid prototyping of applications,
which will hopefully lead to innovative new uses of activity classification.

While it is purported[12] that there is research being done on bringing activity-
awareness to Android platforms, there does not seem to be any work published
on this matter or any applications available to support it. While there a small
number of self-proclaimed “context-aware” applications for Android, this context
is almost exclusively limited to geolocation. This project will therefore produce
one of the first publicly available activity-aware applications for the Android
platform.
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4 Location analysis

Location-based services are currently undergoing an “explosion”[5], thanks to im-
provements in technology, and greater openness on the part of service providers
and handset manufacturers. All modern smartphone platforms have a geoloca-
tion stack, usually backed by a GPS chipset and in most cases augmented with
either a database of known cell tower locations, or a map of known wifi network
identifiers and locations, or both. The two databases allow for rough geoloca-
tion when GPS is not available, or for greatly decreased lookup time when a
GPS lock is available.

However, while the geolocation stack is a rich source of data, it is a poor source
of information. A latitude/longitude pair may describe the user’s exact loca-
tion, but a user would be hard-pressed to tell the difference between the lati-
tude/longitude of their home, place of work, or of somewhere in between the two
with no real significance. A great deal of research has therefore been devoted
to detecting meaningful locations from GPS traces.

“Place recognition” has two phases: learning and recognising. An initial learning
phase analyses a sensor log and segments the data into places where the device
is stable (stationary), and designates this as a “waypoint”. It then merges “way-
points” that appear to identify the same place being visited multiple times. The
second phase uses these learned waypoints to recognise when the device is re-
visiting a place, and therefore also when the device is not visiting a previously
known place (for example when it is moving between two)[15].

Unfortunately, quite a lot of research into location analysis uses GPS “blackspots”

to identify useful places[23, 18]. With older GPS chipsets, the satellite signal
would be lost when the user entered a building, and this allowed an inference
that the current location was probably a place of interest. However, modern
GPS chipsets receive a signal in most indoor locations. It is possible that a
decrease in signal strength or number of locked satellites may still occur, or
that GSM signal strength could be used instead, but these ideas have not been
widely explored at present.

There is, however, plenty of research relating to the use of location data out-
doors. One application[18] learns not only the user’s frequently visited places,
but the method of transport used between them and the typical routes taken.
It can then offer instructions showing the user how to go from place to place,
or issue alerts if the user appears to be going the wrong way (by getting on the
wrong bus, for instance). The ability to correctly infer the user’s destination
would be extremely useful in a context-aware system: a user walking to do their
grocery shopping is almost certainly going to want to interact with their phone
differently than a user on a bus going to work.

5 Bluetooth

The user’s context depends on not only what they are doing, where they are
doing it, but also who they are with. Sitting and eating lunch with a man-
ager is quite a different context to sitting and eating lunch with a spouse. It
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would therefore be desirable to be able to identify between different people when
performing context analysis.

One of the few ways that a mobile telephone can identify other people is by
searching for their mobile telephones. This can be done by scanning for Blue-
tooth devices, which involves broadcasting a “device inquiry” message; if a device
chooses to answer the inquiry, it discloses its unique MAC address and device
class®. Unfortunately, this requires the person to not only be carrying a mo-
bile telephone, but a Bluetooth-enabled model, and for them to have configured
their device to have Bluetooth enabled and to be “visible”. A study in 2004[11]
found that only 1 in 150 people had such a configured device on a university
campus. This figure will undoubtedly be greater now, and may well be greater
when in public, but it highlights that only a handful of people may be detectable
via their Bluetooth devices.

A study in 2006[22] used a similar technique to monitor the social context of
the user, introducing the idea of “familiar” people, “unfamiliar” people and “fa-
miliar strangers”. These labels were applied based on the number of times their
Bluetooth devices were detected 6. While the definition of “familiar” and “un-
familiar” are quite obvious, “familiar strangers” is a new class of people used to
describe those who the user encounters repeatedly, but doesn’t interact with.
This may include neighbours that are passed on the street, or fellow commuters
on a journey into work. The number of people in each of those groups (and any
changes in those numbers) can be used to infer how “comfortable” the user feels
with their social context, and whether their current activity is part of a normal
routine or is novel.

This research has, to date, not been readily combined with activity-aware appli-
cations, and this project will aim to integrate the results of Bluetooth scanning
with “classical” activity classification techniques and to evaluate whether it pro-
vides any benefit.

6 Power management

One major consideration when deploying an application on a mobile device is the
amount, of power it will use. An application constantly polling any one sensor
can reduce battery life significantly, and an application which kept all available
sensors active (in addition to doing CPU-heavy analysis on them) would drain
the battery in a typical smartphone in a matter of hours. A context-aware
application is not very useful for a user if they can only use their telephone for
an hour or two before it needs recharging!

One solution[34]is to only use one or two sensors to monitor the user’s activity
until it appears to be transitioning. For example, if the user is believed to be
walking, the application only needs to periodically check either the accelerom-
eter (to confirm the user is still making walking motions) or GPS (to confirm
the distance traveled is still consistent with walking) to know that their activity

5the device class tells us whether the device is a computer or a mobile telephone, for
example
6and by extension the number of times the user had come into contact with them
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has not changed. As soon as the user’s behaviour becomes inconsistent with
walking, the application can bring other sensors online until it has successfully
reclassified the activity, and then resume monitoring with minimal sensors.

Another option[34] (which can be used in conjunction) is to only enable sensors
for a short amount of time, and then sleep for a period before reactivating them.
The “duty cycle” suggested for accelerometers is 6 second of sensing followed by
10 seconds of sleeping. The six second window is enough time to allow for
capturing a full range of motion (several complete strides) if the user is walking
or running, and then the ten second sleep stops the accelerometer using battery
power until the next cycle. This process obviously means that a sudden switch
in activity will not be noticed immediately, but a delay of a few seconds is
acceptable as most activities will last for minutes or longer.

The battery life on modern smartphones rarely exceeds 24 hours of typical use,
s0 it is extremely important that any applications developed for this project does
not significantly reduce this. A balance between prompt detection and notifica-
tion of activity changes and battery use by sensors and processing algorithms
will need to be found.
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Part 11

Specification

7 Experimentation

7.1 Battery use

The average lifetime of a typical Android mobile telephone will need to be
ascertained, taking into consideration typical day-to-day use of the device and
any additional battery drain caused by that. The impact of sensor use on the
battery lifetime needs to be calculated or experimentally determined, and the
effect of the algorithms described in section 6 needs to be quantified.

Once this is complete, a selection of algorithms and suitable parameters should
be made for use in the classifier application (section 8.1). The aim of the selec-
tion should be to ensure the best activity detection whilst not severely reducing
the device’s battery life.

7.2 Location analysis

As discussed in section 4, existing algorithms to detect interesting places rely on
GPS signals not being obtainable indoors, which is no longer true with current
generation GPS chipsets. It may be possible to adapt these algorithms to work
instead using the GSM signal strength or number of locked GPS satellites. The
variance of these when inside and outside a building need to be investigated to
determine if this is a feasible approach, or whether an alternate algorithm needs
to be used.

A suitable algorithm should be implemented which allows the user’s activity to
be annotated with location-based context. This would ideally take the form of
a source and destination for mobile activities, or location for static activities.
The goal is to be able to differentiate between “walking to work” and “walk-
ing to the shop”, although the labeling of places may be left to future work.
Unlabeled places (i.e., something akin to “walking to place2” and “walking to
place?” instead of the previous examples) still allow for applications to tailor
their behaviour based on the user’s previous activities at or when walking to
that place, so will be sufficient for an initial version.

7.3 Bluetooth usage

The algorithm for classifying familiar, unfamiliar, and “familiar stranger” Blue-
tooth devices (section 5) should be implemented. An experiment should then be
conducted to determine whether or not the data provides useful clues as to the
user’s context. This will depend on the number of other people with Bluetooth
discoverable devices in the vicinity of the user.

If there are a sufficient number of discoverable devices, then the algorithms
should be included in the classifier application to provide additional context.

15



8 Deliverables

The following items should be delivered:

8.1 Context-aware Framework
An Android application which:

e monitors raw sensor data and extracts features from the device’s:

accelerometer sensors

magnetic field sensors

camera

— microphone
e monitors relevant data and extracts features concerning;:

— visible Bluetooth devices in proximity to the device
— the current location of the device

— the current GSM signal strength and cell ID

e presents the user with a method of optionally annotating this data with
their current activity

e classifies the user’s current activity using the extracted features and a
K-Nearest Neighbour algorithm

e enhances the classification with extra contextual data inferred from loca-
tion or Bluetooth service:

— the user’s probable source and destination, if traveling
— the user’s current location, if stationary
— the user’s company, if detected

e attempts to conserve battery life by intelligent management and timing of
sensor activity

8.1.1 Interface

The application should provide two different interfaces to retrieve the user’s
context. The first should be an implementation of the Android ContentProvider
interface. This allows third party applications to query and retrieve data (in
this case, the user’s probable activities and context) as and when they need it.

The ContentProvider interface exposes data as a table. The classifier application
should therefore supply a unique ID for each possible activity, the name of
the activity (if labeled), the time the activity was started, and the estimated
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uncertainty in the classification. It should also expose relevant details of any
context information, such as related places (s7.2) or other participants (s7.3).

The second interface should use Android broadcast Intents to notify any in-
terested application whenever the user’s activity changes. This will allow ap-
plications to be notified whenever the activity or context of the user changes.
The Intent should contain a URI which corresponds to an entry in the table re-
turned by the ContentProvider, so applications can retrieve information about
the user’s activity directly.

Whenever activities, places or participants are exposed in the interface, they
should be assigned an ID which remains consistent for the specified activity,
place or participant. Applications can use this ID regardless of any annotations
the user supplies. For example, the first time an interesting place is detected
it may be assigned ID 42 and label “place42”, the user may then annotate this
place as “home”, and some time later replace it with “old house”; the ID will be
consistent across all of these labels, so any application using this information
will continue to function.

8.2 Activity condition for Locale

As a proof-of-concept, an application should be developed which provides Locale[3],
a popular Android application used to alter device settings and perform actions
based on certain conditions, with a new condition representing the user’s activ-
ity.

This will allow users to change their device settings based on their current
activity by creating rules within Locale. Locale also allows users to post updates
to popular social networking sites such as Twitter and Facebook, so it will be
possible for users to broadcast their activities to their friends.

8.3 Context-aware home screen

To demonstrate the utility of applications being context-aware, an application
will be developed that replaces the standard Android home screen. It should
dynamically adapt its layout and contents according to the user’s activity and
other context information made available by the classifier application.

The replacement home screen needs to allow users to browse and launch appli-
cations, and should expose relevant (context-sensitive) notifications to the user,
including notifications of e-mails, missed calls, text messages and upcoming
appointments.

8.4 User and developer guides

e A user guide for the classifier application
e A user guide for the Locale condition provider

e A user guide for the Context-aware home screen
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e A developer’s guide for using the information exposed by the CLASSIFIER
application

8.5 Website

A website should be created containing an overview of the applications, instruc-
tions for both users and developers, and links to download the applications.
The website should explain the basic ideas behind activity and context aware
applications, and the specific techniques used in this project.
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Part III

Evaluation

9 Reports

The results of the experimentation described in section 7 should be written
up as a report. The reports must include the data collected in each of the
experiments, the conclusions drawn from those, and the impact of the results of
the experiment on the project deliverables.

10 Deliverables

On successful completion of the project, there should be three deliverable appli-
cations as specified in section 8. These can be tested and evaluated in a variety
of manners:

10.1 Unit tests

Throughout the development of the project, unit tests should be created to test
key functionality of all applications. It is expected that at the completion of
the project, all unit tests should pass successfully, and they will have a code
coverage of 80% or above.

10.2 System tests

The classifier application should also have a suite of system tests. These should
consist of a set of fake or pre-recorded inputs which are fed into the application
in place of raw sensor data. The output of the classifier (via the API) can then
be compared to expected output for the data.

10.3 User acceptance testing

The Locale addon and context-aware home screen should be subject to user
acceptance testing for evaluation. This should take the form of providing the
applications to multiple end users, allowing them to use them for a period of time
(providing instructions for certain tasks to complete). The users should then be
presented with a questionnaire which they can use to evaluate the functionality,
utility and design of the applications.
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10.3.1 Android market

In addition to providing the applications to a closed set of users, the applications
should be published to the Android market. This will allow any owner of a
compatible Android device to download and use the applications. The market
also allows users to rate the application and leave comments, which will be an
extremely useful method of evaluating the success of the applications.

As part of this, the classifier application/framework will be published, and
should include instructions for developers detailing how they can make their
applications context-aware. The interest expressed and number of applications
which use it (if any) will be an indicator of the effectiveness of the API and its
documentation.

10.4 Classification scope
The classifier should be able to classify the following activities:

e walking
e running
e standing
o sitting

e traveling in a vehicle

These should be evaluated by means of a leave-one-out cross-validation test, with
data collected from one or more users and annotated by hand. It is expected
that the classifier should correctly classify all activities with an accuracy of at
least 70%, within 30 seconds of the activity being started.

10.5 Resource usage

Finally, the applications should be evaluated based on their resource usage.
One of the main concerns will be battery usage (caused both by the application
using processor time, and activating sensors), but attention must also be paid
to memory consumption (especially after extended use). The goal should be
to ensure that the resource usage of the applications in this project do not
adversely impact the functionality of the device; that is, battery life should
not be reduced so significantly that it requires users to change their normal
charging behaviour, and memory usage should not be so high as to cause other
applications to become sluggish or be closed by the operating system.
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