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Abstract—Recently the interest about the services in the 
ubiquitous environment has increased. These kinds of services 
are focusing on the context of the user’s activities, location or 
environment. There were many studies about recognizing these 
contexts using various sensory resources. To recognize human 
activity, many of them used an accelerometer, which shows good 
accuracy to recognize the user’s activities of movements, but 
they did not recognize stable activities which can be classified by 
the user’s emotion and inferred by physiological sensors. In this 
paper, we exploit multiple sensor signals to recognize to user’s 
activity. As Armband includes an accelerometer and 
physiological sensors, we used them with a fuzzy Bayesian 
network for the continuous sensor data. The fuzzy membership 
function uses three stages differed by the distribution of each 
sensor data. Experiments in the activity recognition accuracy, 
have conducted by the combination of the usages of 
accelerometers and physiological signals. For the result, the 
total accuracy appears to be 74.4% for the activities including 
dynamic activities and stable activities, using the physiological 
signals and one 2-axis accelerometer. When we use only the 
physiological signals the accuracy is 60.9%, and when we use the 
2 axis accelerometer the accuracy is 44.2%. We show that using 
physiological signals with accelerometer is more efficient in 
recognizing activities. 

I. INTRODUCTION

HE recognition of human activity is a concerning 
problem to provide interactive service with the user in 
various environments. Research about activity 

recognition is emerging recently, using various sensory 
resources. There are studies using cameras or GPS based on 
the user’s movement by using pattern recognition techniques. 
Many of the other research use accelerometers as the main 
sensor placing the accelerometer on the user's arm, leg or 
waist. They recognize activities like walking or running, 
which has movements in the activity and can be optimized for 
the recognition based on the accelerometer. 

Accelerometers show a high accuracy in recognizing 
activities with lots of movements. But they are weak to 
recognize the activities with little movements. 
Accelerometers also provide continuous sensory data which 
is hard to separate to the exact boundary of several states. 
Other research use physiological sensors to recognize the 
user’s context, as the user’s body status can represent the 
user’s activity and also the user’s emotion which depends on 
the activity. Therefore using the physiological sensor with 
accelerometers will help to recognize the user’s activity. 

In this paper, we use not only an accelerometer but also 
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physiological sensors to help the recognition of activities. 
Accelerometers have advantages to measure the user’s 
movement and the physiological signals have advantages to 
measure the user’s status of the body. Most of these sensors 
calibrate continuous sensor data, and if the data is near the 
boundary of a specific state, the evidence variable will show a 
radical difference in small changes. To lessen these changes 
in this situation we propose to preprocess the data with fuzzy 
logic. Fuzzy logic can represent ambiguous states in linguistic 
symbols, which is good in continuous sensory data. As 
sensory data include uncertainty of calibrating data and also 
human activity itself has it too, we use Bayesian network to 
do the inference, and modify the learning and inference 
methods that fit to the fuzzy preprocessing. 

II. BACKGROUND

A. Related works 
There are many research groups studying about human 

activity recognition using various sensors like cameras, GPS 
or accelerometers. Tapia used a simple state-change sensor to 
detect the objects which the user is using at home [1], and 
Han used an infrared camera to contrast the silhouette of the 
user and recognized the activity by using the sequence of the 
images [2]. When using these kinds of sensors such as 
state-change sensor, cameras or microphones, the research 
uses pattern recognition and tracks the user’s position to 
recognize the user’s activity. 

Using motion detection sensors or cameras can only collect 
log data about the user’s activities in an abstract way, and 
using a camera needs a large consumption of calculation. 
There are other research using sensors which can represent 
the user’s activity like accelerometers or physiological 
sensors. These are sensors that mostly use continuous data 
values. As these sensors’ measurements are continuous, the 
research using these sensors are using various methods to 
quantize the continuous measurements. Meijer used a motion 
sensor and accelerometers for measurements, calculated the 
difference with each activity and compared it with a rule [3]. 
Ravi uses three axes accelerometers with several classifiers, 
naïve Bayes, decision tree and SVM [4]. Parkka also used 
three axes accelerometers, and in addition, they added 
physiological sensors and used a decision tree for the 
classifier [5]. 

Subramanya used a GPS and a light sensor to detect the 
location and an accelerometer to recognize the related activity 
with the location [6]. They used binning for preprocessing 
and dynamic Bayesian network for classification. These 
research use sensors which collect continuous measurements 
and classify activities by using binning or decision tree. 
Binning and decision tree are useful to recognize activities 
but there can be some problems of segmenting the continuous 
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measurements, especially if the measurements are ambiguous 
between activities. In this paper, we use fuzzy logic which has 
advantages to represent continuous data in symbolic states for 
preprocessing [7], and a fuzzy Bayesian network, which is 
compromised with the preprocessed fuzzy data, to solve the 
problem between ambiguous measurements. We use a sensor, 
Armband, which has an accelerometer and physiological 
sensors as well, and collect the user’s activity log information 
by using a PDA.  

B. Physiological sensor 
Various sensors are used to recognize the user’s activity 

such as GPS, cameras, microphones, accelerometers and 
physiological sensors. Among those various sensors, 
Bodymedia’s Armband is a sensor which can measure the 
user’s physiological signals. It has five kinds of sensory 
resources inside, a two axes accelerometer, a heat flux sensor, 
a galvanic skin response sensor, a skin temperature sensor, 
and a thermometer [8]. With these five sensors it calibrates 
the sensory data and combines to 24 kinds of data. 

Thus, the Armband can  recognize not only the dynamic 
activities by the accelerometer but also the stable and static 
activities by the physiological signals, too. The Armband has 
a maximum of 32 Hz sampling rate, and uses the Innerview 
professional 5.0 [8] to collect the data. Innerview professional 
5.0 is able to show the collected data in a graph or convert the 
data to several formats of files. Figure 1 shows the appearance 
of the Armband when it is worn on the upper left arm and the 
screen of the Innerview professional 5.0 showing the data in a 
graph.

In this work, from the 24 kinds of measurements by the 
Armband, we use the two axes accelerometer values, galvanic 
skin response, heat flux, skin temperature, energy expenditure, 
metabolic equivalants, and step counts. 

C. Fuzzy logic 
Fuzzy logic has been used in a wide range of problem 

domains in process control, management and decision 
making, operations research, and classification. The 
conventional crisp set model makes decision in black and 
white, yes or no, and it has a typical boundary in the 
classification of several stages. The representation of the low 
stage will have a value of 1 until the upper bound, and the 
moment the value goes over the upper bound, the value of the 
low stage will suddenly change into 0. This crisp set model of 
classification is simple to implement but when it is used in 
continuous values in real number, like sensory data, it is a 
hard problem to decide the boundary. It is also a hard problem 
for the inference models when the data is nearby the boundary, 
keeping the robustness of a little change of the data. By using 
fuzzy logic, the decision becomes flexible and can keep each 
stage’s representation near by the boundary of the data. It 
helps to represent the vagueness of human intuition in a 
linguistic modeling which is hard in the crisp model [7]. 

A fuzzy membership function calculates the fuzzy 
membership for each stage with a specific value. The most 
popular function type is a trapezoidal membership function 
and a triangular membership function which the graph is 
shown in figure 1. These functions are easy to implement, 
have low consuming calculations like formula (1) and (2) [9]. 
The triangular membership function(MFtri) requires 3 
parameters and the trapezoidal membership function(MFtrap)
requires 4. The value is simple divided with a rule of the 
range of data x. The parameter can be chosen and modified by 
a direct view of a graph. There are also a membership using 
the Gaussian distribution and a sigmoidal membership 
function. 
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Fig. 2. The graph of the trapezoidal (left) and triangular (right) fuzzy 

Fig. 1. The Armband worn on the left upper arm (top) and the screen of 
Innerview professional 5.0 (bottom)
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D. Bayesian networks 
A Bayesian network is a graph with probabilities for 

representing random variables and their dependencies. It 
efficiently encodes the joint probability distribution of a large 
set of variables. This representation consists of two 
components. The first component is a directed acyclic 
graph(DAG) and the second component describes a 
conditional distribution for each variable. The nodes of the 
graph represent random variables and its arcs represent 
dependencies between random variables with conditional 
probabilities at nodes. As the graph is a directed acyclic graph 
all edges are directed and there is no cycle when edge 
direction are followed. 

Each node has a initial probability table which can be 
measured by a statistical method or by a expert’s knowledge, 
so that the network can make a robust result even if there is a 
missing value in a uncertain environment. This characteristic 
is especially important in the usage of sensory resources. 
Calculating the probability of a node is based on the Bayes 
rule. If a node does not have a parent the probability is as the 
initial probability table, and if it has, it is calculated by adding 
the multiplication of each probability of the state in the 
variable node and the conditional probability of the variable 
node’s state in the parent’s probability table. The calculation 
of the probability is like formula (3) [10]. 

i
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The joint probability of random variables {x1, … , xn} in a 
Bayesian network is calculated by the multiplication of local 
conditional probabilities of all the nodes. Let a node xi denote 
the random variable xi in the Bayesian network, and parenti
denote the parent nodes of xi, from which dependency arcs 
come to node xi, Then, the joint probability of { x1, … , xn} is 
given as the following formula (4). 

i
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It is not a simple task to get the exact conditional 
probability distribution when the variables have continuous 
values and high order dependencies. As conditional 
probability table is not suited for continuous values because 
the values should be quantized and the table size will grow 
larger with the dependency order.  

So we used fuzzy Bayesian network which can make more 
flexible inferences by preprocessing the continuous variable 
data in fuzzy logic, and train the conditional probability table 
by a fuzzy training method which can be differed with the 
conventional discrete training model. 

III. FUZZY BAYESIAN NETWORK FOR ACTIVITY RECOGNITION

As directly using the sensor data is an issue to consider, we 
need a framework to quantize the data. The flow of the system 
is like figure 3. The Armband collects the log data based on 
the user’s activity, and a PDA is used for the user to annotate 
the current activity he or she is doing. These two log data are 
collected simultaneously and save the same format of the 
current time. Then, the log integrator will merge these data 
into entire integrated log data. The preprocessor will use this 
data and generate a fuzzy integrated data for each sensor log. 
With this data the fuzzy Bayesian network will train the 
conditional probability tables, and the inference also uses this 
fuzzy integrated data. 

A. Preprocessing with fuzzy logic 
As measurements from Armband are continuous a step of 

preprocess is necessary. Figure 4 shows the distribution of the 
measurements and the continuous measurements with the 
discrete function results.  

Segmenting continuous data is a considerable issue when 
the data lay on one side, like figure 4(top), because a little 
difference of segmentation makes a huge difference of the 
result. We made a fuzzy membership function depending on 
the distribution using the mean and standard deviation of the 
each sensory measurement. 

Fig. 3.  The overview of the system flow 



We separated the data in half by the mean value, and 
calculated the distribution of each side with the standard 
deviation in three stages. If the distribution of a side is wide it 
uses a Gaussian membership function, or if it’s distribution is 
moderate it uses a trapezoidal, and if the distribution is very 
narrow it uses a triangular fuzzy membership function. Each 
side can have these three kinds of different fuzzy membership 
function, so by combining the fuzzy membership of each side, 
there can be nine kinds of combinations of a full complete 
membership function. For the discrete function we used a 
function based on the fuzzy membership function which 
segments the data into three states. The state of the discrete 
function chooses the state which has the maximum fuzzy 
membership value between other states. But this function can 
have a problem when the data is like figure 4(bottom). The 
curve above represents the continuous data from the sensor 
and the curve below shows the results of a discrete function. 
The higher values have no problem, but the lower values’ 
discrete function result shows a shaking result with a small 
transition. This can be a problem in the inferring phase, 
because the evidence will change with just a small amount of 
transition.

B. Training of fuzzy Bayesian network 
Using the same training method with the discrete model 

will not work perfectly as the input of each variable are not 
the same as the discrete model which only chooses a single 
state of the variable, but it contains the fuzzy membership 
value of each state. As we used fuzzy logic to preprocess the 
measurements, we used a learning method which fits to the 
fuzzy data, differed with the discrete model of training based 
on the Bayes theorem. The training method of the discrete 
model only counts a state of the data, and the fuzzy method 
will count all of the state which has a fuzzy membership 
value. 

As sensory resources are independent to each other without 
any dependencies, we used the structure of the naïve Bayes 
classifier, and make the variables to give no influence or have 
any interactions between each other [11]. Naïve Bayes 
classifier is based on the Bayes theorem calculating P(B|A).

This can be calculated by formula (5) in a discrete model. In 
formula (5),  stands for the discrete function(D) result of an 
input of the evidence variable(A) about the state of the 
evidence(state) with the input x. The discrete function only 
allows one state to be counted for the conditional probability. 
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Differed with the discrete model the fuzzy learning method 
allows more than one states to be counted for the conditional 
probability. The fuzzy membership function(MF) will 
produce the fuzzy membership value of each state of the input 
evidence, and all of the value is considered to be used. 
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This makes the values, on the edge of the discrete function 
which is ambiguous of determining the state, to be more 
flexible and give probability to both of the ambiguous states. 

C. Inference of fuzzy Bayesian network  
When we use the fuzzy Bayesian network to infer the status 

of a variable, we use a discriminant which chooses the state 
which has the largest probability. The discriminant function f
is like formula (7) in a naïve Bayes classifier. It will multiply 
each evidences of each variable’s conditional probability. In 
this formula, E is the evidence values from the environment, 
and k is the inferring status of the Bayesian network. vik means 
the value of the evidence variable Aj [11]. 

j
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In the discrete method of the naïve Bayes classifier, 
formula (7), only one of the evidence conditional probability 
of each variable only gives influence to the result of the 
discriminant. As a very little difference of data will change 
the results of the inference of the Bayesian network, in the 
discrete method there are problems when the data is like 
figure 4(bottom). So we modified the discriminant function 
like formula (8). 

j k
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In formula (8), when the result of the membership 
function(MF) is not zero, which means the data is near the 
boundary of the status, the conditional probability each of the 
status’ above and below the boundary gives influence to the 
result. This dissolves the radical difference when the data 
moves over the boundary and helps the classifier to keep the 
changes calm about the data which is ambiguous to divide 

Fig. 4. The distribution of the measurements (top) and continuous data 
with the discrete function results (bottom)
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The accuracy of table 2 is all better than the other tables, 
table 3, which only used the physiological signals, show that 
it is more efficient when recognizing the stable activities than 
table 4, and in the opposite table 4 shows that the 
accelerometer is more efficient when recognizing the 
dynamic activities. Because there is only one 2-axis 
accelerometer worn on the upper right arm the results are not 
so good, but the dynamic activity recognition accuracy is as 
good as or better than table 2’s results. As table 3’s accuracy 
of each activity is a little lower than table 2’s accuracy, 
because that even an activity is stable, the accelerometer 
helps the recognition. The dynamic activities in table 3 shows 
that they are confused with each other because the there is no 
accelerometer information. Table 4’s accuracy of walking is 
much higher than table 2 and running and exercising is 
similar with table 2. This means that dynamic activities can be 
recognized only with the accelerometer. The reading activity 
was confused with the eating activity and resting activity, but 

when the physiological signals and accelerometer signals are 
combined it showed 73.5 percent of accuracy. 

V. CONCLUSION

In this paper, we showed that using a fuzzy Bayesian 
network is more efficient than the discrete model when using 
continuous data for recognizing the user’s activity. We used 
the Armband sensor which calibrates physiological signals 
and includes a 2-axis accelerometer. The first experiment 
results are, when we used the discrete model of the naïve 
Bayes classifier has shown 70.0 percent of accuracy and the 
fuzzy Bayesian network has shown 74.4 percent of accuracy. 
The second experiment has shown that each activity has an 
efficient sensor to recognize using the physiological signals 
or the 2 axis accelerometer depend on the vitality, and 
combining these two kinds of sensor helps to recognize all of 
those activities. In the future work, we will need to integrate 
more sensors for the context-aware service about the user 
activity, change the frequency of the data collection time, and 
improve the classifier for a temporal inference model to 
analyze the sensory data’s alterations. 
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TABLE IV 
CONFUSION MATRIX USING ACCELEROMETER

 E1 P R1 R2 R3 S1 S2 W E2 
E1 24.2 32.5 0.8 0 0 0 19.2 20.0 3.3
P 17.1 67.9 0 2.1 0 0 3.5 3.5 5.9
R1 5.1 70.4 12.3 2.0 0 0 6.1 3.1 1.0
R2 1.0 44.7 0.5 48.8 0 0 2.0 0.5 2.5
R3 0 1.6 0 0 82.5 0 0 14.3 1.6
S1 0.8 47.4 1.9 42.2 0 0 6 0.3 1.4
S2 5.8 7.8 0.6 12.3 0 0 39.7 2.6 31.2

W 5.5 3.8 0 0 4.2 0 2 76.3 8.2
E2 7.3 13.5 3.1 0 0.5 0 2.1 28.6 44.9

E1=Eating, P = Playing, R1 = Reading, R2 = Resting, R3 = Running, S1 = 
Sleeping, S2 = Studying, W = Walking, E2 = Exercising (Total accuracy = 
44.7%). 

TABLE III 
CONFUSION MATRIX USING PHYSIOLOGICAL SIGNALS

 E1 P R1 R2 R3 S1 S2 W E2 
E1 30.9 13.3 0 17.1 0 0 18.3 20.4 0
P 0 90.6 0 0 0 0 0 0 9.4
R1 78.6 1.0 1.0 13.3 0 0 6.1 0 0
R2 3.0 0 0 55.9 0 0 41.1 0 0
R3 1.6 0 0 0 58.7 0 0 38.1 1.6
S1 13.1 1.1 0 0 0 85.5 0 0.3 0
S2 13.6 0 0 7.1 0 0 73.5 5.8 0

W 1.3 2.2 0 3.5 15.3 0 3.8 57.7 16.2
E2 14.6 10.9 0 1.0 3.1 0 0 29.2 41.2

E1=Eating, P = Playing, R1 = Reading, R2 = Resting, R3 = Running, S1 = 
Sleeping, S2 = Studying, W = Walking, E2 = Exercising (Total accuracy = 
60.9%). 

TABLE II 
CONFUSION MATRIX USING PHYSIOLOGICAL SIGNALS AND ACCELEROMETER

 E1 P R1 R2 R3 S1 S2 W E2 
E1 43.7 12.1 10.4 0 0 0 14.2 18.9 0
P 0 92.7 0 0 0 0 0 0.07 6.6
R1 16.3 1.0 73.5 5.1 0 0 3.1 0 1.0
R2 4.0 0 0.5 86.3 0 0 7.6 0 1.6
R3 0 0 1.6 0 84.1 0 0 12.7 1.6
S1 2.4 0.8 9.9 0 0 85.8 0 0.3 0.8
S2 11.7 0 1.3 5.2 0 0 74.7 2.6 34.5

W 6.0 2.7 0.7 0 2.4 0 3.1 75.8 9.3
E2 4.7 9.9 8.3 0 1.1 0 1.6 31.2 43.2

E1=Eating, P = Playing, R1 = Reading, R2 = Resting, R3 = Running, S1 = 
Sleeping, S2 = Studying, W = Walking, E2 = Exercising (Total accuracy = 
74.2%). 


