
22	 PERVASIVE computing� Published by the IEEE CS   n   1536-1268/08/$25.00 © 2008 IEEE
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Rapid Prototyping  
of Activity Recognition 
Applications

The CRN Toolbox enables fast implementation of activity and context 
recognition systems, featuring mechanisms for distributed processing 
and support for mobile and wearable devices. 

T oday, the development of activ-
ity recognition systems has two 
main phases. The first phase is to 
design the recognition method—
the sensor setup, feature set, 

classifiers, classifier parameters, fusion meth-
ods, and so on. Here, designers feed experi-
mental data offline into conventional rapid- 
prototyping tools such as Matlab. These tools 
provide a rich reservoir of off-the-shelf, param-

eterizable algorithms and 
visualization methods, which 
enable the testing of different 
system variants quickly with-
out time-consuming imple-
mentation work.

Unfortunately, most of 
these simulation environ-
ments aren’t suitable for actu-

ally running applications, especially in mobile 
and pervasive environments. They typically de-
pend on custom engines or libraries requiring 
large memory footprints and high computing 
power. Consequently, a separate, second phase 
is usually necessary to implement activity rec-
ognition applications. This phase implements 
the selected algorithms in an appropriate pro-
gramming language and then distributes them 
to specific devices. Relevant issues in this phase 
include sensor interfaces, synchronization of the 

sensor signals, and optimization for specific de-
vices (for example, floating-point or fixed-point 
calculation).

The Context Recognition Network (CRN) 
Toolbox (http://crnt.sf.net) combines these two 
phases and permits quick construction of com-
plex multimodal context recognition systems 
for immediate deployment in the targeted en-
vironment. We developed the CRN Toolbox to 
ease the process of building activity recognition 
systems. Three case studies demonstrate the ver-
satility of the CRN Toolbox. In these case stud-
ies, we deployed the CRN Toolbox to support 
information flow in hospitals, monitor walking 
habits to help prevent cardiovascular diseases, 
and recognize hand gestures in a car-parking 
game. The spectrum of implemented solutions 
indicates that our approach is viable in the di-
verse environments of wearable and server-
based applications.

Comparing the CRN Toolbox  
with other tools
The CRN Toolbox isn’t general-purpose perva-
sive middleware such as Runes (Reconfigurable 
Ubiquitous Networked Embedded Systems),1 
nor a sensor-node operating system such as  
TinyOS.2 Neither is it a high-level framework 
for rule-based automation, such as Visual-
RDK.3 Rather, it’s a tool set specifically opti-
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mized for implementing multimodal, 
distributed activity and context recog-
nition systems running on Posix oper-
ating systems. Like conventional rapid-
prototyping tools, the CRN Toolbox 
contains a collection of ready-to-use 
algorithms (signal processing, pattern 
classification, and so on). Unlike clas-
sic event detection in homogeneous sen-
sor networks—for example, DSWare 
(Data Service Middleware)4—it sup-
ports complex activity detection from 
heterogeneous sensors. Its implementa-
tion is particularly optimized for mo-
bile devices. This includes the ability to 
execute algorithms, whether in float-
ing-point or fixed-point arithmetic, 
without recoding. Moreover, with its 
mature functionality, the CRN Tool-
box isn’t likely to suffer from limited 
user acceptance as the Context toolkit 
framework did.5

The CRN Toolbox contains dedi-
cated building blocks for interfacing 
a broad range of sensor nodes. It also 
supports synchronization, merging, and 
splitting of data streams. In contrast to 
the PCOM (Pervasive Computing Com-
ponent System) model,6 which focuses 
on contract-based spontaneous configu-
ration, the Toolbox relies on a known 
network topology. Users can flexibly 
distribute applications among devices 
(including servers) by simply starting 

the configured Toolbox runtime on the 
appropriate system. Another important 
feature is the ability to interface conven-
tional simulation environments such 
as WEKA (Waikato Environment for 
Knowledge Analysis, www.cs.waikato.
ac.nz/~ml). The functionality is acces-
sible through a graphical configura-
tion editor, which enables constructing 
complex applications by connecting and 
configuring a set of task icons corre-
sponding to different processing steps.

The concepts the CRN Toolbox 
uses—graphical programming, data-
driven computation, parameterizable 
libraries, and distribution—are them-
selves not new. But the CRN Toolbox 
has optimally adapted and integrated 
these concepts for rapid, efficient im-
plementation of context recognition 
systems.

Toolbox concept
The concept of the CRN Toolbox stems 
from the observation that most activity 
recognition systems rely on a relatively 
small set of algorithms. These include 
sliding-window signal partitioning, 
standard time and frequency domain 
features, classifiers, and time series or 
event-based modeling algorithms.

The key differences between systems 
involve sensor choice, parameteriza-
tion of algorithms (for instance, slid-
ing-window size), and data flow. The 
data flow can be as simple as feeding 
1D sensor data to a mean filter and a 
classifier. This could be a configuration 

for recognizing sitting and standing 
from an upper-leg accelerometer, for 
example. It can be as complex as fusing 
data from tens of heterogeneous sen-
sors, working with different sampling 
frequencies, different feature computa-
tions, and even different classifiers. In 
such complex systems, different plat-
forms often handle different sensor 
subgroups—for example, certain mo-
bile devices and servers with stationary 
sensors. The implementation must han-
dle the distributed computation, collect 
the data, and synchronize the different 
data streams.

The CRN Toolbox simplifies the im-
plementation of even complex, distrib-
uted context recognition systems to the 
following three steps:

Compile the Toolbox for all plat-
forms on which it needs to run.
Select and configure the algorithms 
and data flow for each platform.
Start the Toolbox on each platform 
with the dedicated configuration.

If it’s necessary to analyze algorithms 
that aren’t presently available in the 
CRN Toolbox, users can easily inter-
face rapid-prototyping tools running 
on a remote server.

Figure 1 shows an overview of the 
CRN Toolbox concept. The step-by-
step configuration guide presents a 
simple example for recognizing kitchen 
activities from the user’s on-body 
sensors.
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Figure 1. Concept of the Context 
Recognition Network (CRN) Toolbox: 
(a) repository of parameterizable 
software components, including I/O 
device readers and writers, filtering 
and classification algorithms, and 
components for splitting, merging, 
and synchronizing data streams;  
(b) graphical editor for specifying data 
flow and configuring components;  
(c) the CRN Toolbox runtime 
environment for online execution of 
the configured software components; 
and (d) arbitrary external tools—for 
example, live data-stream plotting 
or another CRN Toolbox (local or 
remote)—communicating with the 
Toolbox runtime.
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Reusable components
The basic building blocks provided by 
the CRN Toolbox are the reusable, pa-
rameterizable components. Conceptu-
ally, the components are active objects 
that operate on data streams. We refer 
to them as tasks. They encapsulate al-
gorithms and data, and they each have 
an individual thread of execution. In 
essence, tasks run in parallel, waiting 
for data packets to arrive at their in-
port. They then process the packet’s 
payload according to their algorithm 
and parameter settings, and provide the 
modified data packet at their out-port. 
Depending on the configured data flow, 
subsequent tasks will receive the packet 
for further processing.

The Toolbox provides reader and 
writer tasks for interfacing with in-
put and output devices, processing 
algorithms for data filtering and clas-
sification, and components for split-
ting, merging, and synchronizing data 
streams. Table 1 summarizes currently 
available tasks. Detailed task descrip-
tions are available as help pages. The 
list is constantly growing as increas-

ingly more users contribute to the proj-
ect. Numbers in parentheses represent 
the number of tasks in each category.

Every task has an individual number 
of parameters that control its opera-
tion. For example, the k-nearest neigh-
bor (KNN) classifier task uses the k, 
a file name with training data, and an 
optional step-size parameter.

The encapsulation in active objects 
and the parameterization proved es-
sential for reusing the actual code. So, 
for most applications, the fact that the 
Toolbox is implemented in C++ is insig-
nificant, yet those applications benefit 
from the efficient runtime.

The motor: Runtime 	  
environment and flow control
The Toolbox runtime provides the vi-
tal environment for tasks to operate. It 
handles dynamic creation and configu-
ration of tasks as well as configuration 
of the data flow.

For parameter handling, the Toolbox 
uses the JavaScript Object Notation 
(JSON) format, with an object loader in 
the “get instance by name” style.7 Thus, 

users can configure the Toolbox at run-
time through text-based configuration 
files that define settings for tasks and the 
data flow that the application needs.

Directed connections from out-ports 
to in-ports specify the data flow between 
tasks. Each data packet transmitted 
along these connections contains data 
entities belonging to one time instant. 
A packet’s payload is organized as a 
vector of values from an abstract data 
type. Moreover, the packets contain a 
time stamp and sequence number. For 
combining multiple streams, the Tool-
box provides merger tasks. Mergers 
combine the payloads of packets from 
separate in-ports and synchronize data 
streams with different sampling rates.

We used pointer references to pass 
data packets along the internal connec-
tions through the task network. Packets 
are cloned only if more than one receiver 
connects to the same out-port. This im-
plementation of the runtime core ensures 
high packet-processing performance. 
Moreover, we preserved processing per-
formance by providing operations to the 
task developer that, like the += operator, 

TABLE 1 
Summary of tasks currently provided by the CRN Toolbox.

Task category (no. 
of tasks) Task implementations

Generic reader (4) Reading from file, keyboard, TCP socket, or serial device (including Bluetooth), using a decoder plug-in

Specific reader (18) ADS* (heart rate), ARSB (walking sensing), BTnode, Hexamite, ID-10 RFID, Lukotronic, NMEA (GPS), 
MyHeart protocol, SkyeTek M1-mini RFID, Tmote force-sensing resistors, Tmote RFID, Tmote magnetic 
distance, TMSI fiber protocol, Suunto ANT protocol, Web interface input, Xsens MT9/MTi, Xsens Xbus, Wii 
Remote

Channel reordering (4) ChannelSelect, SelectiveSplitterTask, SimpleMerger, SyncMerger

Filtering (4) FilterTask, TransitionDetector, VecLen, Einsnorm

Filter plug-ins (16) Average signal energy, band energy ratio, bandwidth, center of gravity, entropy, FFT, fluctuation, peak, 
max, mean, median, slope, scale, spectral roll-off frequency, threshold, variance

Classification tasks (9) Distance2Position, Hexamite2D, HMMs, KNN, PCFG parser, RangeChecker, SequenceDetector, SimpleHexSensClassification

Miscellaneous (4) Synchronizer, Heartbeat, Valve, Nothing

Writer (9) TCP server, TCP client, serial port, file, console, MyHeart protocol, graph display, image display, Nirvana 
(silent sink)

Encoder plug-ins (9) ARFFEncoder (WEKA), BinaryEncoder, CmdEncoder, IntLinesEncoder, JSONEncoder, PlottingEncoder, TextLabelEncoder, 	
TimestampedLinesEncoder, SuperPacketEncoder

Decoder plug-ins (4) ASCIIDecoder, FloatLinesDecoder, IntLinesDecoder, StringLinesDecoder
* ADS: Advanced Digital Strap (Philips heart rate belt); ARFF: Attribute-Relation File Format (WEKA); ARSB: activity recognition sensor board; FFT: fast Fourier transform; 
HMM: hidden Markov model; KNN: k-nearest neighbor; PCFG: probabilistic context-free grammars; WEKA: Waikato Environment for Knowledge Analysis
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inherently modify data objects instead 
of allocating new objects.

Synchronizing independent 	  
data streams
Synchronization of the data streams 
from different sensors is a major issue in 
multimodal activity recognition. When 
using several independent sensors, it’s 
important to synchronize their data 
streams to a common starting point.

A feasible concept for this type of 
synchronization is aligning streams on 
events recorded by all sensors simulta-
neously—for example, a user jumping 
up with a set of on-body acceleration 
sensors. We implemented this concept 
in the Synchronizer and SyncMerger tasks. 
Figure 2 depicts the solution for the ex-
ample of two Xsens MT9 acceleration 
sensors. The jump inserted a character-
istically high acceleration amplitude. 
The Synchronizer tasks detect the peaks 
caused by these events and adjust data 
packet time stamps accordingly. The 
SyncMerger combines the data streams by 
aligning the time stamps. The Synchro-
nizer tasks are manually activated—for 
instance, through a KeyboardReader—to 
limit the alignment phases to controlled 
time frames. Our initial analysis of the 
method showed that an alignment of 
0.5 seconds and better was possible.

Readers: Sensor 	  
hardware encapsulation
The CRN Toolbox implements sensor in-
terfaces as tasks without in-ports. These 
reader tasks instantiate new data pack-
ets for data samples acquired from sen-
sors (or other sources) and provide these 
packets on their out-port. Our architec-
ture supports various reader implemen-
tations that can capture different sensors 
or other sources, such as web pages, ap-

plication outputs, and data files.
For activity annotation, we imple-

mented a keyboard reader to perform 
online labeling of data. This reader 
proved very helpful, because it enables 
storing the labels with the raw data for 
later evaluation.

Writers: Communication 	  
for distributed processing
Writer tasks are the key to distributed 
execution and use of external tools. 
They forward data received at their in-
port to external interfaces (such as files, 
displays, or network connections). For 
network connections, we use TCPWriter 
and TCPReader tasks to communicate via 
TCP/IP sockets. The CRN Toolbox 
transmits data packets on the channel 
in a serialized form. The Toolbox ob-
tains the serialization from an encoder 
plug-in in the TCPWriter task. Similarly, the 
TCPReader uses a decoder plug-in for dese-
rialization. Thus, two CRN Toolboxes 
running independently—for example, 
on different hosts—can collaborate us-

ing the writer-reader communication.
Using this mechanism, the Toolbox 

can link to arbitrary programs based 
on compatible interfaces. Currently, 
such interfaces exist for Matlab and 
Weka, both of which support data vi-
sualization and pattern recognition in 
experiments and demonstrators.

Easy configuration
The Toolbox’s rapid-prototyping capa-
bilities increased our need for an easy, 
quick configuration editor. Figure 2 
shows the graphical configuration edi-
tor. Users can drag tasks from a library 
into the workspace and connect them 
to other tasks with just a few mouse 
clicks. The Java-based editor produces 
configuration files for the Toolbox. (See 
the “How to Cook: A Step-by-Step 
Guide” sidebar for an example of how 
easy it is to build activity recognition 
applications with the CRN Toolbox.)

Case studies
The vitality of a framework such as 
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Figure 2. Example using two Xsens  
MT9 acceleration sensors: (a) CRN 
Toolbox graphical configuration  
editor with synchronization setup;  
(b) data alignment achieved at an  
event detected by the Synchronizers.
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the CRN Toolbox stems from its con-
tinual development and deployment in 
various projects. The showcase of ap-
plications in industry projects, student 
classes, and demonstrators (see tables 
2 through 4) highlights the CRN Tool-

box’s maturity and widespread use. 
These projects have successfully de-
ployed the Toolbox on different plat-
forms, including

Linux running on arm32, i386, and •

amd64 systems;
MacOSX running on i386s and 
iPhones; and
Cygwin running on i386s.

Here, we depict three case studies 

•

•

T he CRN Toolbox makes building activity recognition ap-
plications easy. For example, implementing your own 

kitchen activity recognition takes only five steps, including classi-
fier training. Moreover, you don’t have to write additional code.

The ingredients are a motion sensor mounted on a glove, a 
wearable computer or “kitchen PC,” and the CRN Toolbox. In 
this guide, we use the MT9 sensor from Xsens. Typical activi-
ties include stirring, whisking, cutting bread, slicing onions, and 
wiping with a cloth.

	 1.	Using the graphical configuration editor, create a configu-
ration for recording training data (see figure A1). Begin by 
adding the MT9Reader to acquire data from the MT9 sensor 
at 100 Hz, and provide all nine channels on its out-port. 
Use SelectiveSplitterTask to choose the channels of interest, and 
then send them to MeanFilter and VarFilter (variance). Set the 
sliding window size to 100 (1 second). Use SimpleMerger to 
combine the two data streams again, and add the output 
of a KeyboardReader task. This task annotates the recording by 
keystrokes. Finally, add LoggerTask to write the resultant data 
streams into a file.

	 2.	Select an annotation key for training each activity. Connect 

the sensor and start the Toolbox with the created configu-
ration. Then, wearing the sensor glove, perform each activ-
ity for about 30 seconds. At the beginning of each activity, 
press its selected annotation key.

	 3.	Review the recorded training data in the log file and reduce 
it to about 100 samples per activity class. The number in 
the last column of the log file indicates the class label.

	 4.	Modify the first configuration to include the classifier and 
the output task (see figure A2). Remove KeyboardReader, be-
cause from now on the classifier will do the annotation. 
Specify the file name of the training data in the properties 
of the KNN task. Attach the DisplayImage task to the KNN and 
specify the picture that should display on the screen for 
each recognized activity category.

	 5.	Start the Toolbox with the new configuration. Now you can 
work in the kitchen as you wish and let the Toolbox track 
your activities or, even better, feed the results into a con-
text-aware cookbook (see figure A3). Bon appétit!

To improve the system, you could add more sensing modali-
ties (such as location), select useful features, or use more sophis-
ticated recognition algorithms.

How to Cook: A Step-by-Step Guide

(1) (2) (3)

Figure A. Configurations for kitchen activity recognition: (1) recording of training data; (2) online classification and 
display of results; and (3) example output of the classification using DisplayImage.
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from different areas, outlining the use 
of the CRN Toolbox.

Supporting information 	  
flow in hospitals
Along with our clinical partners in the 
EU-sponsored WearIT@Work project, 
we developed a solution to improve in-
formation flow for the hospital ward.8,9 
During the ward rounds, doctors deter-
mine patients’ further treatment under 

tight time limitations. Access to patient 
documents at bedside would enable doc-
tors to make decisions on the basis of all 
available information. Notebooks or PCs 
are impractical for this task because their 
operation is time consuming and distract-
ing and involves touching unsterilized de-
vices while in contact with patients.

Our wearable solution simplifies 
document access. When the doctor 
comes to the patient’s bed, the bedside 

monitor automatically displays a docu-
ment list for that patient. The doctor 
can then browse the documents by 
pointing at the monitor and swiveling 
his or her forearm. The system the doc-
tor wears consists of the QBIC (www.
qbic.ethz.ch) running the CRN Tool-
box, an Xsens motion sensor, and an 
RFID reader. The doctor wears the 
QBIC as a belt; the Xsens motion sen-
sor and RFID reader attach to the lower 

TABLE 2 
Major industry projects using the CRN Toolbox.

Project description Uses and deployment of CRN Toolbox

WearIT@Work: supports hospital information flow, 
RFID for patient identification, gesture-controlled 
access to patient documents using wrist-worn motion 
sensor.8,9

Data capture, gesture recognition, control of hospital’s document browser.
Several demonstrators and test systems were built and a hospital trial was 
conducted.
Platform: Q-Belt Integrated Computer (QBIC), Linux on arm32.

•
•

•

WearIT@Work production support: activity recogni-
tion of car assembly and maintenance,10 uses inertial 
motion and indoor location sensors.

Recording multimodal sensor data: Xsens, Hexamite, ultrasound, muscle 
force; various demonstrators.
Platform: Linux on i386.

•

•

MonAMI dynamic monitoring services. Dynamic reconfiguration of the Toolbox, depending on available sensors 
and registered services.
Platforms: Linux on i386 and arm32.

•

•

MyHeart walking habits: online classification of walk-
ing activities and intensities to support active lifestyle 
and improve fitness.

Acquisition of heart rate, acceleration, and air pressure classification.
Streaming results to a mobile phone and professional coaching center.
Platform: Linux on arm32 (QBIC).

•
•
•

Location tracking: GPS-based local map visualization. GPS position logging (NMEA protocol) and conversion for dynamic map 
display, forwarding to central mission server.
Platform: Linux on arm32 (QBIC).

•

•

TABLE 3 
Student class projects using the CRN Toolbox.

Project description Uses and deployment of CRN Toolbox

ISWC 06 tutorial “Hands-on Activity Context Recognition”: 
building a gesture recognition system for controlling simulated 
car-parking game with real waving gestures; 12 participants.

Testing algorithms and gesture types using simulated data streams 
from a motion sensor glove.
9 components, 7,000 LOC, Linux amd64 platform.

•

•

Number-entering game: entering binary digits using a motion 
sensor only; practical exercise and competition for ambient-
intelligence lecture; 15 students in 5th semester.

Understanding algorithms, modularization, and interfacing to 	
sensor data.
7 components, 2,000 LOC, Linux i386 platform.

•

•

Location estimation and activity recognition: ultrasonic and 
motion sensors; practical exercise for ambient intelligence 	
lecture; 12 students in 5th semester.

Understanding algorithms and location-tracking challenges.
7 components, 2,000 LOC, Linux i386 platform.

•
•

Interactive World project: software project to implement 	
gesture control for games (Pong, Tetris), three days, 19 	
students in 4th semester.

Implementing TCP reader task, using KNN classifier (gesture 
recognition).
5 components, 1,200 LOC, Linux i386 platform.

•

•

Activity monitoring: training a classifier to recognize human 
activities (sitting, standing, walking, running) and visualizing 
results; 10 students in 4th semester.

Learning a classifier’s concepts and operation, implementation, 
and testing.
7 components, 2,000 LOC,  Linux i386 platform.

•

•
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arm. The patient wears an RFID tag. At 
each patient’s bed, the bedside monitor 
displays documents from the hospital’s 
information system.

Figure 3 shows the Toolbox con-
figuration. In this configuration, we 
use threshold detection and sequence- 
matching tasks (ThresholdFilter, TransitionDe-
tector, and SequenceDetector) to process each 
gyroscope axis of the motion sensor. 
This setup can detect forearm gesture 
sequences such as swivel left, then right 
(open-document command). The Com-
mandDispatcher acts as a gateway, forward-
ing only those commands in active state 
(controlled by an activation gesture). 
This task also consumes the patient 
identification from RFID. Finally, the 

TCPClientWriter transmits the commands to 
the document browser of the hospital’s 
information system.

We tested the complete setup in a 
two-week trial with doctors in an Aus-
trian hospital. The system’s shortcom-
ings mainly concerned gesture detec-
tion robustness and sensor wearability, 
which we are now investigating.

Monitoring walking habits
With our industry partners in the EU-
sponsored MyHeart project, we inves-
tigated new approaches for preventing 
cardiovascular diseases and maintain-
ing low disease risks. Because many 
daily activities involve walking, we de-
veloped a walking-habits monitor that 

supports active walking and can track 
activity intensity.

In this setup, the QBIC serves as a 
central data acquisition and process-
ing hub, running the CRN Toolbox. 
A custom sensing unit monitors user 
activity. This unit contains accelera-
tion and air pressure sensors attached 
to the belt. Additionally, a heart rate 
chest belt uses Bluetooth to communi-
cate with the QBIC. Based on features 
from the belt sensor unit, we classify 
walking straight, up, down, and idle 
as well as using the elevator up or 
down. The Toolbox forwards the re-
sults, along with the heart rate, to a 
mobile phone.

Figure 4 shows the final Toolbox con-

QBIC

Bedside monitor,
hospital information

system

CRN Toolbox

(b)(a)

Figure 3. Hospital information flow example: (a) hospital information support system setup; (b) CRN Toolbox configuration.

TABLE 4 
Demonstrator projects using the CRN Toolbox.

Project description Uses and deployment of CRN Toolbox

Parking game: controlling a virtual driver and car 
with real hand gestures in a parking game.11

Capturing glove-based inertial sensor data, gesture spotting using explicit 	
segmentation, gesture event search, and fusion steps.
Controlling the game visualization engine.
Platform: Linux amd64.

•

•
•

Dietary activity tracking using PCFG: inference of 
food intake cycles from activities.12

Simulating activity event input, PCFG parsing, reporting results.
Platform: Linux amd64.

•
•

Hammering and screwdriving demo: recognizing 
assembly activities (hammering, screwdriving, 
sanding, sawing) with a motion sensor in a glove.

Xsens motion sensor capturing, classifying activities, displaying recognition 
results on screen and via wireless connection.
Platform: Linux on arm32 (QBIC).

•

•
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figuration. This project required reader 
tasks to capture data from the belt sen-
sor unit (ARSBReader) and heart rate belt 
(ADSReader). It also involves several filters, 
a classifier (KNN), and a writer to com-
municate to the mobile phone applica-
tion (MyHeartWriter).

The visualizations on the phone 
showed activity level, heart rate, and 
recommendations based on detected 
activities. (In our ongoing work, we use 
further sensors at the limbs to capture 
diverse activities.)

Mixed-reality car-parking game
We designed a car-parking game to 
explore the use of wearable systems 
in computer games.11 The game plot 
features the player helping a virtual 
driver fit a virtual car into a parking 
spot. The player does so by weaving 
hand and arm gestures while facing a 
virtual scene at the roadside, where a 
parking spot is available between other 
vehicles. Figure 5 shows a screenshot 
of the scene. The game simulates the 
driver’s and car’s behavior, which fol-

low the gesture commands. The goal is 
to perform this guiding task as quickly 
and safely as possible—in particular, 
avoiding collisions with other cars and 
obstacles.

In this application, the CRN Tool-
box recognizes gestures from the play-
er’s glove. Its task is to detect five ges-
ture commands in the continuous data 
stream from the glove: forward, back-
ward, turn left, turn right, and stop. 
We used acceleration and gyroscope 
sensors in three axes from an Xsens 
unit attached to the glove. The gesture-
spotting procedure uses an explicit time 
series segmentation algorithm (SWAB), 
followed by a class-specific feature 
similarity search (Similarity). Next, Confi-
denceMerger fuses the individual gestures. 
Then, StringMap maps the retrieved ges-
tures to game commands, and TCPWriter 
transmits them to the game simulation 
and graphics engine.

We used the game as a demonstrator 
for tutorials and student courses. We 
built recognition models for 16 differ-
ent gestures. Hence, every player could 

customize the system by selecting five 
gestures according to individual pref-
erences. This customization simply in-
volved exchanging configuration files 
for recognition tasks.

User evaluation
Right from its very first days, the CRN 
Toolbox has been a community proj-
ect. The positive user feedback and the 
growing number of tasks indicate that 
our approach is well perceived. How-
ever, a thorough quantitative evalua-
tion of middleware and programming 
tools such as the CRN Toolbox is dif-
ficult.5 Although we haven’t yet per-
formed a controlled assessment, we do 
have some empirical (in some cases, 
quantitative) results that support our 
view of its usefulness.

Experience with students
As tables 2 through 4 show, we have 
widely used the Toolbox in student 
classes, and more than 60 students have 
worked with it.

A class of 19 fourth-semester com-

QBIC

Mobile phone displayWalking-activity
sensing

Heart rate

CRN Toolbox

(b)(a)

Figure 4. Walking-habits monitoring example: (a) phone visualization; (b) CRN Toolbox configuration.
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puter science students implemented an 
application with the Toolbox to control 
the computer games Pong and Tetris by 
shaking a motion sensor in different 
directions. A typical solution for rec-
ognizing these gestures consists of five 
Toolbox components (approximately 
1,200 LOC). They

acquire data from sensors,
apply filters (mean, variance),
classify gestures using the KNN 
algorithm,
send results via TCP, and
manage the data flow.

The exercise also included the imple-
mentation of a new Toolbox task for 
reading from TCP sockets. The stu-
dents were only Java beginners and 
had never programmed C++ before, 
yet with the Toolbox they all solved the 
recognition problem within 20 hours. 
Four of them also completed the Java 
game in that time.

Evaluation from researchers
We used the CRN Toolbox in an ac-
tivity recognition tutorial at the 10th 
International Symposium on Wearable 
Computers (ISWC 2006). We asked 12 
participants to rate their impressions 
after working with the Toolbox for 

•
•
•

•
•

four hours. Ten completed the tutorial 
feedback form. On average, they rated 
themselves as advanced software pro-
grammers with some knowledge of C++ 
but little experience in context recogni-
tion. They reported average durations 
of 10 minutes (maximum 30 minutes) 
to understand the four tasks of the tuto-
rial, 15 minutes (maximum 30 minutes) 
to implement and run solutions with 
the Toolbox, and 20 minutes to debug 
their configuration, if needed.

We received many positive comments, 
such as “good and fast platform for ap-
plication development,” “one can click 
filters together,” “easy to understand, 
easy to use,” and “you don’t have to re-
invent the wheel.” Criticism focused on 
missing documentation materials. Our 
current work addresses this issue by us-
ing automatic documentation tools and 
web platforms more intensively.

A s a framework, the CRN 
Toolbox introduces some 
processing overhead. A 
prominent aspect in our de-

sign is the between-task communica-
tion, required in most useful configu-
rations. This task relies on a common 
packet format to exchange all media 
types. Besides the payload, each packet 

contains a time stamp, a sequence num-
ber, and a payload pointer, totaling 16 
bytes. In a typical scenario, such as 
the hospital support system discussed 
earlier, raw sensor-data packets have 
the highest transmission rate. In that 
example, an MT9Reader acquired a 9- 
channel Xsens MT9, requiring 36 bytes 
for one sample. In the default configu-
ration, the reader outputs each sample 
as a separate data packet. This yields a 
total overhead of 44 percent. For packet 
rates above 100 Hz, such as in audio, 
the CRN Toolbox decreases the effec-
tive overhead by transferring multiple 
samples in one packet.

Most current applications of the 
Toolbox don’t exploit its distributed-
processing capabilities. We intend to 
use this feature in more complex ap-
plications in the near future. We also 
plan to investigate combining the CRN 
Toolbox with existing pervasive mid-
dleware frameworks that often rely on 
activity and context recognition ser-
vices—precisely what the CRN Tool-
box provides.
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