
22	 PERVASIVE computing� Published by the IEEE CS n 1536-1268/08/$25.00 © 2008 IEEE

A c t i v i t y - B a s e d C o m p u t i n g

Rapid Prototyping
of Activity Recognition
Applications

The CRN Toolbox enables fast implementation of activity and context
recognition systems, featuring mechanisms for distributed processing
and support for mobile and wearable devices.

T oday, the development of activ-
ity recognition systems has two
main phases. The first phase is to
design the recognition method—
the sensor setup, feature set,

classifiers, classifier parameters, fusion meth-
ods, and so on. Here, designers feed experi-
mental data offline into conventional rapid-
prototyping tools such as Matlab. These tools
provide a rich reservoir of off-the-shelf, param-

eterizable algorithms and
visualization methods, which
enable the testing of different
system variants quickly with-
out time-consuming imple-
mentation work.

Unfortunately, most of
these simulation environ-
ments aren’t suitable for actu-

ally running applications, especially in mobile
and pervasive environments. They typically de-
pend on custom engines or libraries requiring
large memory footprints and high computing
power. Consequently, a separate, second phase
is usually necessary to implement activity rec-
ognition applications. This phase implements
the selected algorithms in an appropriate pro-
gramming language and then distributes them
to specific devices. Relevant issues in this phase
include sensor interfaces, synchronization of the

sensor signals, and optimization for specific de-
vices (for example, floating-point or fixed-point
calculation).

The Context Recognition Network (CRN)
Toolbox (http://crnt.sf.net) combines these two
phases and permits quick construction of com-
plex multimodal context recognition systems
for immediate deployment in the targeted en-
vironment. We developed the CRN Toolbox to
ease the process of building activity recognition
systems. Three case studies demonstrate the ver-
satility of the CRN Toolbox. In these case stud-
ies, we deployed the CRN Toolbox to support
information flow in hospitals, monitor walking
habits to help prevent cardiovascular diseases,
and recognize hand gestures in a car-parking
game. The spectrum of implemented solutions
indicates that our approach is viable in the di-
verse environments of wearable and server-
based applications.

Comparing the CRN Toolbox
with other tools
The CRN Toolbox isn’t general-purpose perva-
sive middleware such as Runes (Reconfigurable
Ubiquitous Networked Embedded Systems),1
nor a sensor-node operating system such as
TinyOS.2 Neither is it a high-level framework
for rule-based automation, such as Visual-
RDK.3 Rather, it’s a tool set specifically opti-

David Bannach and Paul Lukowicz
University of Passau

Oliver Amft
ETH Zurich

Authorized licensed use limited to: Imperial College London. Downloaded on November 26, 2009 at 00:30 from IEEE Xplore. Restrictions apply.

A c t i v i t y - B a s e d C o m p u t i n g

APRIL–JUNE 2008	 PERVASIVE computing� 23

mized for implementing multimodal,
distributed activity and context recog-
nition systems running on Posix oper-
ating systems. Like conventional rapid-
prototyping tools, the CRN Toolbox
contains a collection of ready-to-use
algorithms (signal processing, pattern
classification, and so on). Unlike clas-
sic event detection in homogeneous sen-
sor networks—for example, DSWare
(Data Service Middleware)4—it sup-
ports complex activity detection from
heterogeneous sensors. Its implementa-
tion is particularly optimized for mo-
bile devices. This includes the ability to
execute algorithms, whether in float-
ing-point or fixed-point arithmetic,
without recoding. Moreover, with its
mature functionality, the CRN Tool-
box isn’t likely to suffer from limited
user acceptance as the Context toolkit
framework did.5

The CRN Toolbox contains dedi-
cated building blocks for interfacing
a broad range of sensor nodes. It also
supports synchronization, merging, and
splitting of data streams. In contrast to
the PCOM (Pervasive Computing Com-
ponent System) model,6 which focuses
on contract-based spontaneous configu-
ration, the Toolbox relies on a known
network topology. Users can flexibly
distribute applications among devices
(including servers) by simply starting

the configured Toolbox runtime on the
appropriate system. Another important
feature is the ability to interface conven-
tional simulation environments such
as WEKA (Waikato Environment for
Knowledge Analysis, www.cs.waikato.
ac.nz/~ml). The functionality is acces-
sible through a graphical configura-
tion editor, which enables constructing
complex applications by connecting and
configuring a set of task icons corre-
sponding to different processing steps.

The concepts the CRN Toolbox
uses—graphical programming, data-
driven computation, parameterizable
libraries, and distribution—are them-
selves not new. But the CRN Toolbox
has optimally adapted and integrated
these concepts for rapid, efficient im-
plementation of context recognition
systems.

Toolbox concept
The concept of the CRN Toolbox stems
from the observation that most activity
recognition systems rely on a relatively
small set of algorithms. These include
sliding-window signal partitioning,
standard time and frequency domain
features, classifiers, and time series or
event-based modeling algorithms.

The key differences between systems
involve sensor choice, parameteriza-
tion of algorithms (for instance, slid-
ing-window size), and data flow. The
data flow can be as simple as feeding
1D sensor data to a mean filter and a
classifier. This could be a configuration

for recognizing sitting and standing
from an upper-leg accelerometer, for
example. It can be as complex as fusing
data from tens of heterogeneous sen-
sors, working with different sampling
frequencies, different feature computa-
tions, and even different classifiers. In
such complex systems, different plat-
forms often handle different sensor
subgroups—for example, certain mo-
bile devices and servers with stationary
sensors. The implementation must han-
dle the distributed computation, collect
the data, and synchronize the different
data streams.

The CRN Toolbox simplifies the im-
plementation of even complex, distrib-
uted context recognition systems to the
following three steps:

Compile the Toolbox for all plat-
forms on which it needs to run.
Select and configure the algorithms
and data flow for each platform.
Start the Toolbox on each platform
with the dedicated configuration.

If it’s necessary to analyze algorithms
that aren’t presently available in the
CRN Toolbox, users can easily inter-
face rapid-prototyping tools running
on a remote server.

Figure 1 shows an overview of the
CRN Toolbox concept. The step-by-
step configuration guide presents a
simple example for recognizing kitchen
activities from the user’s on-body
sensors.

•

•

•

Parameterizable
components

CodeInterfaces

Configuration
editor

Configuration

CRN Toolbox
runtime

External
tools

(b) (d)(c)

(a)

Sensor
devices

Output devices

SS
S

OO

Figure 1. Concept of the Context
Recognition Network (CRN) Toolbox:
(a) repository of parameterizable
software components, including I/O
device readers and writers, filtering
and classification algorithms, and
components for splitting, merging,
and synchronizing data streams;
(b) graphical editor for specifying data
flow and configuring components;
(c) the CRN Toolbox runtime
environment for online execution of
the configured software components;
and (d) arbitrary external tools—for
example, live data-stream plotting
or another CRN Toolbox (local or
remote)—communicating with the
Toolbox runtime.

Authorized licensed use limited to: Imperial College London. Downloaded on November 26, 2009 at 00:30 from IEEE Xplore. Restrictions apply.

24	 PERVASIVE computing� www.computer.org/pervasive

Activity-Based Computing

Reusable components
The basic building blocks provided by
the CRN Toolbox are the reusable, pa-
rameterizable components. Conceptu-
ally, the components are active objects
that operate on data streams. We refer
to them as tasks. They encapsulate al-
gorithms and data, and they each have
an individual thread of execution. In
essence, tasks run in parallel, waiting
for data packets to arrive at their in-
port. They then process the packet’s
payload according to their algorithm
and parameter settings, and provide the
modified data packet at their out-port.
Depending on the configured data flow,
subsequent tasks will receive the packet
for further processing.

The Toolbox provides reader and
writer tasks for interfacing with in-
put and output devices, processing
algorithms for data filtering and clas-
sification, and components for split-
ting, merging, and synchronizing data
streams. Table 1 summarizes currently
available tasks. Detailed task descrip-
tions are available as help pages. The
list is constantly growing as increas-

ingly more users contribute to the proj-
ect. Numbers in parentheses represent
the number of tasks in each category.

Every task has an individual number
of parameters that control its opera-
tion. For example, the k-nearest neigh-
bor (KNN) classifier task uses the k,
a file name with training data, and an
optional step-size parameter.

The encapsulation in active objects
and the parameterization proved es-
sential for reusing the actual code. So,
for most applications, the fact that the
Toolbox is implemented in C++ is insig-
nificant, yet those applications benefit
from the efficient runtime.

The motor: Runtime 	
environment and flow control
The Toolbox runtime provides the vi-
tal environment for tasks to operate. It
handles dynamic creation and configu-
ration of tasks as well as configuration
of the data flow.

For parameter handling, the Toolbox
uses the JavaScript Object Notation
(JSON) format, with an object loader in
the “get instance by name” style.7 Thus,

users can configure the Toolbox at run-
time through text-based configuration
files that define settings for tasks and the
data flow that the application needs.

Directed connections from out-ports
to in-ports specify the data flow between
tasks. Each data packet transmitted
along these connections contains data
entities belonging to one time instant.
A packet’s payload is organized as a
vector of values from an abstract data
type. Moreover, the packets contain a
time stamp and sequence number. For
combining multiple streams, the Tool-
box provides merger tasks. Mergers
combine the payloads of packets from
separate in-ports and synchronize data
streams with different sampling rates.

We used pointer references to pass
data packets along the internal connec-
tions through the task network. Packets
are cloned only if more than one receiver
connects to the same out-port. This im-
plementation of the runtime core ensures
high packet-processing performance.
Moreover, we preserved processing per-
formance by providing operations to the
task developer that, like the += operator,

TABLE 1
Summary of tasks currently provided by the CRN Toolbox.

Task category (no.
of tasks) Task implementations

Generic reader (4) Reading from file, keyboard, TCP socket, or serial device (including Bluetooth), using a decoder plug-in

Specific reader (18) ADS* (heart rate), ARSB (walking sensing), BTnode, Hexamite, ID-10 RFID, Lukotronic, NMEA (GPS),
MyHeart protocol, SkyeTek M1-mini RFID, Tmote force-sensing resistors, Tmote RFID, Tmote magnetic
distance, TMSI fiber protocol, Suunto ANT protocol, Web interface input, Xsens MT9/MTi, Xsens Xbus, Wii
Remote

Channel reordering (4) ChannelSelect, SelectiveSplitterTask, SimpleMerger, SyncMerger

Filtering (4) FilterTask, TransitionDetector, VecLen, Einsnorm

Filter plug-ins (16) Average signal energy, band energy ratio, bandwidth, center of gravity, entropy, FFT, fluctuation, peak,
max, mean, median, slope, scale, spectral roll-off frequency, threshold, variance

Classification tasks (9) Distance2Position, Hexamite2D, HMMs, KNN, PCFG parser, RangeChecker, SequenceDetector, SimpleHexSensClassification

Miscellaneous (4) Synchronizer, Heartbeat, Valve, Nothing

Writer (9) TCP server, TCP client, serial port, file, console, MyHeart protocol, graph display, image display, Nirvana
(silent sink)

Encoder plug-ins (9) ARFFEncoder (WEKA), BinaryEncoder, CmdEncoder, IntLinesEncoder, JSONEncoder, PlottingEncoder, TextLabelEncoder, 	
TimestampedLinesEncoder, SuperPacketEncoder

Decoder plug-ins (4) ASCIIDecoder, FloatLinesDecoder, IntLinesDecoder, StringLinesDecoder
* ADS: Advanced Digital Strap (Philips heart rate belt); ARFF: Attribute-Relation File Format (WEKA); ARSB: activity recognition sensor board; FFT: fast Fourier transform;
HMM: hidden Markov model; KNN: k-nearest neighbor; PCFG: probabilistic context-free grammars; WEKA: Waikato Environment for Knowledge Analysis

Authorized licensed use limited to: Imperial College London. Downloaded on November 26, 2009 at 00:30 from IEEE Xplore. Restrictions apply.

APRIL–JUNE 2008	 PERVASIVE computing� 25

inherently modify data objects instead
of allocating new objects.

Synchronizing independent 	
data streams
Synchronization of the data streams
from different sensors is a major issue in
multimodal activity recognition. When
using several independent sensors, it’s
important to synchronize their data
streams to a common starting point.

A feasible concept for this type of
synchronization is aligning streams on
events recorded by all sensors simulta-
neously—for example, a user jumping
up with a set of on-body acceleration
sensors. We implemented this concept
in the Synchronizer and SyncMerger tasks.
Figure 2 depicts the solution for the ex-
ample of two Xsens MT9 acceleration
sensors. The jump inserted a character-
istically high acceleration amplitude.
The Synchronizer tasks detect the peaks
caused by these events and adjust data
packet time stamps accordingly. The
SyncMerger combines the data streams by
aligning the time stamps. The Synchro-
nizer tasks are manually activated—for
instance, through a KeyboardReader—to
limit the alignment phases to controlled
time frames. Our initial analysis of the
method showed that an alignment of
0.5 seconds and better was possible.

Readers: Sensor 	
hardware encapsulation
The CRN Toolbox implements sensor in-
terfaces as tasks without in-ports. These
reader tasks instantiate new data pack-
ets for data samples acquired from sen-
sors (or other sources) and provide these
packets on their out-port. Our architec-
ture supports various reader implemen-
tations that can capture different sensors
or other sources, such as web pages, ap-

plication outputs, and data files.
For activity annotation, we imple-

mented a keyboard reader to perform
online labeling of data. This reader
proved very helpful, because it enables
storing the labels with the raw data for
later evaluation.

Writers: Communication 	
for distributed processing
Writer tasks are the key to distributed
execution and use of external tools.
They forward data received at their in-
port to external interfaces (such as files,
displays, or network connections). For
network connections, we use TCPWriter
and TCPReader tasks to communicate via
TCP/IP sockets. The CRN Toolbox
transmits data packets on the channel
in a serialized form. The Toolbox ob-
tains the serialization from an encoder
plug-in in the TCPWriter task. Similarly, the
TCPReader uses a decoder plug-in for dese-
rialization. Thus, two CRN Toolboxes
running independently—for example,
on different hosts—can collaborate us-

ing the writer-reader communication.
Using this mechanism, the Toolbox

can link to arbitrary programs based
on compatible interfaces. Currently,
such interfaces exist for Matlab and
Weka, both of which support data vi-
sualization and pattern recognition in
experiments and demonstrators.

Easy configuration
The Toolbox’s rapid-prototyping capa-
bilities increased our need for an easy,
quick configuration editor. Figure 2
shows the graphical configuration edi-
tor. Users can drag tasks from a library
into the workspace and connect them
to other tasks with just a few mouse
clicks. The Java-based editor produces
configuration files for the Toolbox. (See
the “How to Cook: A Step-by-Step
Guide” sidebar for an example of how
easy it is to build activity recognition
applications with the CRN Toolbox.)

Case studies
The vitality of a framework such as

(b)

(a)

0 500 1,000

Time (ms)

Sensor 1
Sensor 2

1,500 2,000 2,500 3,000

Ac
ce

le
ra

tio
n

Synchronization event

Figure 2. Example using two Xsens
MT9 acceleration sensors: (a) CRN
Toolbox graphical configuration
editor with synchronization setup;
(b) data alignment achieved at an
event detected by the Synchronizers.

Authorized licensed use limited to: Imperial College London. Downloaded on November 26, 2009 at 00:30 from IEEE Xplore. Restrictions apply.

26	 PERVASIVE computing� www.computer.org/pervasive

Activity-Based Computing

the CRN Toolbox stems from its con-
tinual development and deployment in
various projects. The showcase of ap-
plications in industry projects, student
classes, and demonstrators (see tables
2 through 4) highlights the CRN Tool-

box’s maturity and widespread use.
These projects have successfully de-
ployed the Toolbox on different plat-
forms, including

Linux running on arm32, i386, and •

amd64 systems;
MacOSX running on i386s and
iPhones; and
Cygwin running on i386s.

Here, we depict three case studies

•

•

T he CRN Toolbox makes building activity recognition ap-
plications easy. For example, implementing your own

kitchen activity recognition takes only five steps, including classi-
fier training. Moreover, you don’t have to write additional code.

The ingredients are a motion sensor mounted on a glove, a
wearable computer or “kitchen PC,” and the CRN Toolbox. In
this guide, we use the MT9 sensor from Xsens. Typical activi-
ties include stirring, whisking, cutting bread, slicing onions, and
wiping with a cloth.

	 1.	Using the graphical configuration editor, create a configu-
ration for recording training data (see figure A1). Begin by
adding the MT9Reader to acquire data from the MT9 sensor
at 100 Hz, and provide all nine channels on its out-port.
Use SelectiveSplitterTask to choose the channels of interest, and
then send them to MeanFilter and VarFilter (variance). Set the
sliding window size to 100 (1 second). Use SimpleMerger to
combine the two data streams again, and add the output
of a KeyboardReader task. This task annotates the recording by
keystrokes. Finally, add LoggerTask to write the resultant data
streams into a file.

	 2.	Select an annotation key for training each activity. Connect

the sensor and start the Toolbox with the created configu-
ration. Then, wearing the sensor glove, perform each activ-
ity for about 30 seconds. At the beginning of each activity,
press its selected annotation key.

	 3.	Review the recorded training data in the log file and reduce
it to about 100 samples per activity class. The number in
the last column of the log file indicates the class label.

	 4.	Modify the first configuration to include the classifier and
the output task (see figure A2). Remove KeyboardReader, be-
cause from now on the classifier will do the annotation.
Specify the file name of the training data in the properties
of the KNN task. Attach the DisplayImage task to the KNN and
specify the picture that should display on the screen for
each recognized activity category.

	 5.	Start the Toolbox with the new configuration. Now you can
work in the kitchen as you wish and let the Toolbox track
your activities or, even better, feed the results into a con-
text-aware cookbook (see figure A3). Bon appétit!

To improve the system, you could add more sensing modali-
ties (such as location), select useful features, or use more sophis-
ticated recognition algorithms.

How to Cook: A Step-by-Step Guide

(1) (2) (3)

Figure A. Configurations for kitchen activity recognition: (1) recording of training data; (2) online classification and
display of results; and (3) example output of the classification using DisplayImage.

Authorized licensed use limited to: Imperial College London. Downloaded on November 26, 2009 at 00:30 from IEEE Xplore. Restrictions apply.

APRIL–JUNE 2008	 PERVASIVE computing� 27

from different areas, outlining the use
of the CRN Toolbox.

Supporting information 	
flow in hospitals
Along with our clinical partners in the
EU-sponsored WearIT@Work project,
we developed a solution to improve in-
formation flow for the hospital ward.8,9
During the ward rounds, doctors deter-
mine patients’ further treatment under

tight time limitations. Access to patient
documents at bedside would enable doc-
tors to make decisions on the basis of all
available information. Notebooks or PCs
are impractical for this task because their
operation is time consuming and distract-
ing and involves touching unsterilized de-
vices while in contact with patients.

Our wearable solution simplifies
document access. When the doctor
comes to the patient’s bed, the bedside

monitor automatically displays a docu-
ment list for that patient. The doctor
can then browse the documents by
pointing at the monitor and swiveling
his or her forearm. The system the doc-
tor wears consists of the QBIC (www.
qbic.ethz.ch) running the CRN Tool-
box, an Xsens motion sensor, and an
RFID reader. The doctor wears the
QBIC as a belt; the Xsens motion sen-
sor and RFID reader attach to the lower

TABLE 2
Major industry projects using the CRN Toolbox.

Project description Uses and deployment of CRN Toolbox

WearIT@Work: supports hospital information flow,
RFID for patient identification, gesture-controlled
access to patient documents using wrist-worn motion
sensor.8,9

Data capture, gesture recognition, control of hospital’s document browser.
Several demonstrators and test systems were built and a hospital trial was
conducted.
Platform: Q-Belt Integrated Computer (QBIC), Linux on arm32.

•
•

•

WearIT@Work production support: activity recogni-
tion of car assembly and maintenance,10 uses inertial
motion and indoor location sensors.

Recording multimodal sensor data: Xsens, Hexamite, ultrasound, muscle
force; various demonstrators.
Platform: Linux on i386.

•

•

MonAMI dynamic monitoring services. Dynamic reconfiguration of the Toolbox, depending on available sensors
and registered services.
Platforms: Linux on i386 and arm32.

•

•

MyHeart walking habits: online classification of walk-
ing activities and intensities to support active lifestyle
and improve fitness.

Acquisition of heart rate, acceleration, and air pressure classification.
Streaming results to a mobile phone and professional coaching center.
Platform: Linux on arm32 (QBIC).

•
•
•

Location tracking: GPS-based local map visualization. GPS position logging (NMEA protocol) and conversion for dynamic map
display, forwarding to central mission server.
Platform: Linux on arm32 (QBIC).

•

•

TABLE 3
Student class projects using the CRN Toolbox.

Project description Uses and deployment of CRN Toolbox

ISWC 06 tutorial “Hands-on Activity Context Recognition”:
building a gesture recognition system for controlling simulated
car-parking game with real waving gestures; 12 participants.

Testing algorithms and gesture types using simulated data streams
from a motion sensor glove.
9 components, 7,000 LOC, Linux amd64 platform.

•

•

Number-entering game: entering binary digits using a motion
sensor only; practical exercise and competition for ambient-
intelligence lecture; 15 students in 5th semester.

Understanding algorithms, modularization, and interfacing to 	
sensor data.
7 components, 2,000 LOC, Linux i386 platform.

•

•

Location estimation and activity recognition: ultrasonic and
motion sensors; practical exercise for ambient intelligence 	
lecture; 12 students in 5th semester.

Understanding algorithms and location-tracking challenges.
7 components, 2,000 LOC, Linux i386 platform.

•
•

Interactive World project: software project to implement 	
gesture control for games (Pong, Tetris), three days, 19 	
students in 4th semester.

Implementing TCP reader task, using KNN classifier (gesture
recognition).
5 components, 1,200 LOC, Linux i386 platform.

•

•

Activity monitoring: training a classifier to recognize human
activities (sitting, standing, walking, running) and visualizing
results; 10 students in 4th semester.

Learning a classifier’s concepts and operation, implementation,
and testing.
7 components, 2,000 LOC, Linux i386 platform.

•

•

Authorized licensed use limited to: Imperial College London. Downloaded on November 26, 2009 at 00:30 from IEEE Xplore. Restrictions apply.

28	 PERVASIVE computing� www.computer.org/pervasive

Activity-Based Computing

arm. The patient wears an RFID tag. At
each patient’s bed, the bedside monitor
displays documents from the hospital’s
information system.

Figure 3 shows the Toolbox con-
figuration. In this configuration, we
use threshold detection and sequence-
matching tasks (ThresholdFilter, TransitionDe-
tector, and SequenceDetector) to process each
gyroscope axis of the motion sensor.
This setup can detect forearm gesture
sequences such as swivel left, then right
(open-document command). The Com-
mandDispatcher acts as a gateway, forward-
ing only those commands in active state
(controlled by an activation gesture).
This task also consumes the patient
identification from RFID. Finally, the

TCPClientWriter transmits the commands to
the document browser of the hospital’s
information system.

We tested the complete setup in a
two-week trial with doctors in an Aus-
trian hospital. The system’s shortcom-
ings mainly concerned gesture detec-
tion robustness and sensor wearability,
which we are now investigating.

Monitoring walking habits
With our industry partners in the EU-
sponsored MyHeart project, we inves-
tigated new approaches for preventing
cardiovascular diseases and maintain-
ing low disease risks. Because many
daily activities involve walking, we de-
veloped a walking-habits monitor that

supports active walking and can track
activity intensity.

In this setup, the QBIC serves as a
central data acquisition and process-
ing hub, running the CRN Toolbox.
A custom sensing unit monitors user
activity. This unit contains accelera-
tion and air pressure sensors attached
to the belt. Additionally, a heart rate
chest belt uses Bluetooth to communi-
cate with the QBIC. Based on features
from the belt sensor unit, we classify
walking straight, up, down, and idle
as well as using the elevator up or
down. The Toolbox forwards the re-
sults, along with the heart rate, to a
mobile phone.

Figure 4 shows the final Toolbox con-

QBIC

Bedside monitor,
hospital information

system

CRN Toolbox

(b)(a)

Figure 3. Hospital information flow example: (a) hospital information support system setup; (b) CRN Toolbox configuration.

TABLE 4
Demonstrator projects using the CRN Toolbox.

Project description Uses and deployment of CRN Toolbox

Parking game: controlling a virtual driver and car
with real hand gestures in a parking game.11

Capturing glove-based inertial sensor data, gesture spotting using explicit 	
segmentation, gesture event search, and fusion steps.
Controlling the game visualization engine.
Platform: Linux amd64.

•

•
•

Dietary activity tracking using PCFG: inference of
food intake cycles from activities.12

Simulating activity event input, PCFG parsing, reporting results.
Platform: Linux amd64.

•
•

Hammering and screwdriving demo: recognizing
assembly activities (hammering, screwdriving,
sanding, sawing) with a motion sensor in a glove.

Xsens motion sensor capturing, classifying activities, displaying recognition
results on screen and via wireless connection.
Platform: Linux on arm32 (QBIC).

•

•

Authorized licensed use limited to: Imperial College London. Downloaded on November 26, 2009 at 00:30 from IEEE Xplore. Restrictions apply.

APRIL–JUNE 2008	 PERVASIVE computing� 29

figuration. This project required reader
tasks to capture data from the belt sen-
sor unit (ARSBReader) and heart rate belt
(ADSReader). It also involves several filters,
a classifier (KNN), and a writer to com-
municate to the mobile phone applica-
tion (MyHeartWriter).

The visualizations on the phone
showed activity level, heart rate, and
recommendations based on detected
activities. (In our ongoing work, we use
further sensors at the limbs to capture
diverse activities.)

Mixed-reality car-parking game
We designed a car-parking game to
explore the use of wearable systems
in computer games.11 The game plot
features the player helping a virtual
driver fit a virtual car into a parking
spot. The player does so by weaving
hand and arm gestures while facing a
virtual scene at the roadside, where a
parking spot is available between other
vehicles. Figure 5 shows a screenshot
of the scene. The game simulates the
driver’s and car’s behavior, which fol-

low the gesture commands. The goal is
to perform this guiding task as quickly
and safely as possible—in particular,
avoiding collisions with other cars and
obstacles.

In this application, the CRN Tool-
box recognizes gestures from the play-
er’s glove. Its task is to detect five ges-
ture commands in the continuous data
stream from the glove: forward, back-
ward, turn left, turn right, and stop.
We used acceleration and gyroscope
sensors in three axes from an Xsens
unit attached to the glove. The gesture-
spotting procedure uses an explicit time
series segmentation algorithm (SWAB),
followed by a class-specific feature
similarity search (Similarity). Next, Confi-
denceMerger fuses the individual gestures.
Then, StringMap maps the retrieved ges-
tures to game commands, and TCPWriter
transmits them to the game simulation
and graphics engine.

We used the game as a demonstrator
for tutorials and student courses. We
built recognition models for 16 differ-
ent gestures. Hence, every player could

customize the system by selecting five
gestures according to individual pref-
erences. This customization simply in-
volved exchanging configuration files
for recognition tasks.

User evaluation
Right from its very first days, the CRN
Toolbox has been a community proj-
ect. The positive user feedback and the
growing number of tasks indicate that
our approach is well perceived. How-
ever, a thorough quantitative evalua-
tion of middleware and programming
tools such as the CRN Toolbox is dif-
ficult.5 Although we haven’t yet per-
formed a controlled assessment, we do
have some empirical (in some cases,
quantitative) results that support our
view of its usefulness.

Experience with students
As tables 2 through 4 show, we have
widely used the Toolbox in student
classes, and more than 60 students have
worked with it.

A class of 19 fourth-semester com-

QBIC

Mobile phone displayWalking-activity
sensing

Heart rate

CRN Toolbox

(b)(a)

Figure 4. Walking-habits monitoring example: (a) phone visualization; (b) CRN Toolbox configuration.

Authorized licensed use limited to: Imperial College London. Downloaded on November 26, 2009 at 00:30 from IEEE Xplore. Restrictions apply.

30	 PERVASIVE computing� www.computer.org/pervasive

Activity-Based Computing

puter science students implemented an
application with the Toolbox to control
the computer games Pong and Tetris by
shaking a motion sensor in different
directions. A typical solution for rec-
ognizing these gestures consists of five
Toolbox components (approximately
1,200 LOC). They

acquire data from sensors,
apply filters (mean, variance),
classify gestures using the KNN
algorithm,
send results via TCP, and
manage the data flow.

The exercise also included the imple-
mentation of a new Toolbox task for
reading from TCP sockets. The stu-
dents were only Java beginners and
had never programmed C++ before,
yet with the Toolbox they all solved the
recognition problem within 20 hours.
Four of them also completed the Java
game in that time.

Evaluation from researchers
We used the CRN Toolbox in an ac-
tivity recognition tutorial at the 10th
International Symposium on Wearable
Computers (ISWC 2006). We asked 12
participants to rate their impressions
after working with the Toolbox for

•
•
•

•
•

four hours. Ten completed the tutorial
feedback form. On average, they rated
themselves as advanced software pro-
grammers with some knowledge of C++
but little experience in context recogni-
tion. They reported average durations
of 10 minutes (maximum 30 minutes)
to understand the four tasks of the tuto-
rial, 15 minutes (maximum 30 minutes)
to implement and run solutions with
the Toolbox, and 20 minutes to debug
their configuration, if needed.

We received many positive comments,
such as “good and fast platform for ap-
plication development,” “one can click
filters together,” “easy to understand,
easy to use,” and “you don’t have to re-
invent the wheel.” Criticism focused on
missing documentation materials. Our
current work addresses this issue by us-
ing automatic documentation tools and
web platforms more intensively.

A s a framework, the CRN
Toolbox introduces some
processing overhead. A
prominent aspect in our de-

sign is the between-task communica-
tion, required in most useful configu-
rations. This task relies on a common
packet format to exchange all media
types. Besides the payload, each packet

contains a time stamp, a sequence num-
ber, and a payload pointer, totaling 16
bytes. In a typical scenario, such as
the hospital support system discussed
earlier, raw sensor-data packets have
the highest transmission rate. In that
example, an MT9Reader acquired a 9-
channel Xsens MT9, requiring 36 bytes
for one sample. In the default configu-
ration, the reader outputs each sample
as a separate data packet. This yields a
total overhead of 44 percent. For packet
rates above 100 Hz, such as in audio,
the CRN Toolbox decreases the effec-
tive overhead by transferring multiple
samples in one packet.

Most current applications of the
Toolbox don’t exploit its distributed-
processing capabilities. We intend to
use this feature in more complex ap-
plications in the near future. We also
plan to investigate combining the CRN
Toolbox with existing pervasive mid-
dleware frameworks that often rely on
activity and context recognition ser-
vices—precisely what the CRN Tool-
box provides.

Acknowledgments
We express our gratitude to all the students and
researchers who contributed to the development

(b)(a)

Sensor input

Server

Gesture command

User

CRN Toolbox

Car-driver simulation

Figure 5. Car-parking game example: (a) a user manipulating a scene; (b) CRN Toolbox configuration.

Authorized licensed use limited to: Imperial College London. Downloaded on November 26, 2009 at 00:30 from IEEE Xplore. Restrictions apply.

APRIL–JUNE	2008	 PERVASIVE computing	 31

of	the	CRN	Toolbox.	This	project	is	partly	sup-
ported	by	the	European	Union	WearIT@Work	and	
MyHeart	projects.

REFERENCES
 1. P. Costa et al., “The Runes Middleware

for Networked Embedded Systems and
Its Application in a Disaster Management
Scenario,” Proc. 5th IEEE Int’l Conf.
Pervasive Computing and Communica-
tions (PerCom 07), IEEE CS Press, 2007,
pp. 69–78.

 2. J. Hill et al., “System Architecture Direc-
tions for Networked Sensors,” ACM SIG-
PLAN Notices, vol. 35, no. 11, 2000, pp.
93–104.

 3. T. Weis et al., “Rapid Prototyping for
Pervasive Applications,” IEEE Perva-
sive Computing, vol. 6, no. 2, 2007, pp.
76–84.

 4. S. Li et al., “Event Detection Using Data
Service Middleware in Distributed Sensor
Networks,” Telecommunication Systems,
vol. 26, nos. 2–4, 2004, pp. 351–368.

 5. K. Edwards et al., “The Challenges of
User-Centered Design and Evaluation for
Middleware,” CHI Letters, vol. 5, no. 1,
pp. 297–304.

 6. C. Becker et al., “PCOM: A Component
System for Pervasive Computing,” Proc.
2nd IEEE Conf. Pervasive Computing
and Communications (PerCom 04), IEEE
CS Press, 2004, pp. 67–76.

 7. D. Crockford, The Application/json
Media Type for JavaScript Object Nota-
tion (JSON), IETF RFC 4627, July 2006;
www.ietf.org/rfc/rfc4627.txt.

 8. K. Adamer et al., “Developing a Wearable
Assistant for Hospital Ward Rounds: An
Experience Report,” to be published in
Proc. Int’l Conf. Internet of Things (IOT
08), Springer, 2008; www.the-internet-of-
things.org.

 9. D. Bannach et al., “Distributed Modular
Toolbox for Multimodal Context Recog-
nition,” Proc. 19th Int’l Conf. Architec-
ture of Computing Systems, LNCS 3894,
Springer, 2006, pp. 99–113.

 10. T. Stiefmeier et al., “Event-Based Activity
Tracking in Work Environments,” Proc.
3rd Int’l Forum Applied Wearable Com-
puting (IFAWC 06), TZI Universität Bre-
men, 2006; http://spring.bologna.enea.

it/ifawc/2006/proceedings/IFAWC2006_
10.pdf.

 11. D. Bannach et al., “Waving Real Hand
Gestures Recorded by Wearable Motion
Sensors to a Virtual Car and Driver in
a Mixed-Reality Parking Game,” Proc.
IEEE Symp. Computational Intelligence
and Games (CIG 07), IEEE Press, 2007,
pp. 32–39.

 12. O. Amft, M. Kusserow, and G. Tröster,
“Probabilistic Parsing of Dietary Activity
Events,” Proc. 4th Int’l Workshop Wear-

able and Implantable Body Sensor Net-
works (BSN 07), IFMBe 13, Springer, 2007,
pp. 242–247.

For	more	information	on	this	or	any	other	com-
puting	topic,	please	visit	our	Digital	Library	at	
www.computer.org/csdl.

the	AUTHORS
David Bannach is	a	doctoral	candidate	and	a	member	of	the	research	staff	at	
the	Embedded	Systems	Laboratory	of	the	University	of	Passau.	His	research	
interests	focus	on	software	systems	for	context-aware	computing.	He	received	
his	diploma	in	computer	science	from	ETH	Zurich.	Contact	him	at	ESL,	Univ.	of	
Passau,	Innstrasse	43,	94032	Passau,	Germany;	david.bannach@uni-passau.de.

Oliver Amft is	a	doctoral	candidate	in	the	Wearable	Computing	Lab	at	ETH	Zu-
rich.	His	research	interests	focus	on	pervasive	healthcare	and	personal-assistant	
systems,	including	embedded	systems,	pervasive	sensing,	and	pattern	recogni-
tion	for	physiology,	activity,	and	behavior	awareness.	He	received	his	MSc	in	
electrical	engineering	from	Chemnitz	Technical	University.	He	is	a	member	of	
the	IEEE.	Contact	him	at	Wearable	Computing	Lab.,	ETH	Zurich,	c/o	Electronics	
Laboratory,	Gloriastrasse	35,	CH-8092	Zurich;	amft@ife.ee.ethz.ch.

Paul Lukowicz is	a	full	professor	and	chair	of	Embedded	Systems	and	Per-
vasive	Computing	at	the	University	of	Passau.	His	research	interests	include	
wearable	and	mobile	computer	architecture,	context	and	activity	recognition,	
high-performance	computing,	and	optoelectronic	interconnection	technol-
ogy.	He	received	his	PhD	in	computer	science	from	the	University	of	Karlsruhe,	
Germany.	Contact	him	at	ESL,	Univ.	of	Passau,	Innstrasse	43,	94032	Passau,	
Germany;	paul.lukowicz@uni-passau.de.

IE
E

E

THE #1 ARTIFICIAL
INTELLIGENCE MAGAZINE!

IEEE Intelligent Systems delivers the
latest peer-reviewed research on all

aspects of artifi cial intelligence, focusing
on practical, fi elded applications.

Contributors include leading experts in

• Intelligent Agents • The Semantic Web
• Natural Language Processing
• Robotics • Machine Learning

The latest issue: Ambient Intelligence

Visit us on the web at
www.computer.org/intelligent

Authorized licensed use limited to: Imperial College London. Downloaded on November 26, 2009 at 00:30 from IEEE Xplore. Restrictions apply.

