
In Proceedings of CHI'99, Pittsburgh, PA, May 15-20, 1999, (to appear). ACM Press.

The Context Toolkit:
Aiding the Development of Context-Enabled Applications

Daniel Salber, Anind K. Dey and Gregory D. Abowd
GVU Center, College of Computing

Georgia Institute of Technology
Atlanta, GA 30332-0280

+1 404 894 7512
{salber, anind, abowd}@cc.gatech.edu

ABSTRACT
Context-enabled applications are just emerging and
promise richer interaction by taking environmental context
into account. However, they are difficult to build due to
their distributed nature and the use of unconventional
sensors. The concepts of toolkits and widget libraries in
graphical user interfaces has been tremendously successful,
allowing programmers to leverage off existing building
blocks to build interactive systems more easily. We
introduce the concept of context widgets that mediate
between the environment and the application in the same
way graphical widgets mediate between the user and the
application. We illustrate the concept of context widgets
with the beginnings of a widget library we have developed
for sensing presence, identity and activity of people and
things. We assess the success of our approach with two
example context-enabled applications we have built and an
existing application to which we have added context-
sensing capabilities.

Keywords
Context-enabled or context-aware computing, ubiquitous
computing, toolkits, widgets, applications development

INTRODUCTION
Over the last decade, several researchers have built
applications that take advantage of environmental
information, also called context, to enhance the interaction
with the user. The construction of these context-enabled
applications is cumbersome, and currently no tools are
available to facilitate the development of this class of
applications. This paper presents a toolkit for developing
reusable solutions for handling context information in
interactive applications.

We first define the notion of context, and through a brief
review of the literature identify the key challenges of
developing applications that sense context, followed by an
overview of the paper.

What Is Context?
Environmental information or context covers information
that is part of an application’s operating environment and
that can be sensed by the application. This typically
includes the location, identity, activity and state of people,
groups and objects. Context may also be related to places
or the computing environment. Places such as buildings
and rooms can be fitted with sensors that provide
measurements of physical variables such as temperature or
lighting. Finally, an application may sense its software and
hardware environment to detect, for example, the
capabilities of nearby resources.

Sensing context information makes several kinds of
context-enabled applications possible: Applications may
display context information, capture it for later access and
provide context-based retrieval of stored information. Of
major interest are context-aware applications, which sense
context information and modify their behavior accordingly
without explicit user intervention.

Why Use Context?
Usage scenarios of typical context-enabled applications
found in the literature have led us to identify recurrent
challenges, which we further detail below.

Mobile tour guides are designed to familiarize a visitor
with a new area. They sense the user’s location and provide
information relevant to both the user and the location she’s
at [1, 3, 6, 10]. Likewise, office awareness systems sense
users’ locations, but are also interested in their activities to
help people locate each other, maintain awareness or
forward phone calls [12, 17, 18]. In ubiquitous computing
systems, devices sense and take advantage of nearby
resources: a handheld computer located next to an
electronic whiteboard may make use of the larger display
surface or allow the user to interact with other nearby
handheld users [14, 18]. Finally, context-based retrieval
applications gather and store context information and allow
later information retrieval based on context information.
For instance the user can ask a note-taking application to
pull up the notes taken at a previous meeting with the group
she’s meeting with currently [9, 13].

Why Is Using Context Difficult?
The above usage scenarios raise the following difficulties,
which are common to most applications that use context

In Proceedings of CHI'99, Pittsburgh, PA, May 15-20, 1999, (to appear). ACM Press.

information. These difficulties stem from the very nature of
context information:

1) It is acquired from unconventional sensors. Mobile
devices for instance may acquire location information
from outdoor GPS receivers or indoor positioning
systems. Tracking the location of people or detecting
their presence may require Active Badge devices,
floor-embedded presence sensors or video image
processing.

2) It must be abstracted to make sense for the application.
GPS receivers for instance provide geographical
coordinates. But tour guide applications would make
better use of higher-level information such as street or
building names. Similarly, Active Badges provide IDs,
which must be abstracted into user names and
locations.

3) It may be acquired from multiple distributed and
heterogeneous sources. Tracking the location of users
in an office requires gathering information from
multiple sensors throughout the office. Furthermore,
context sensing technologies such as video image
processing may introduce uncertainty: they usually
provide a ranked list of candidate results. Detecting the
presence of people in a room reliably may require
combining the results of several techniques such as
image processing, audio processing, floor-embedded
pressure sensors, etc.

4) It is dynamic. Changes in the environment must be
detected in real time and applications must adapt to
constant changes. For instance, when a user equipped
with a handheld moves away from the electronic
whiteboard, the user loses the benefit of the wide
display surface and the application must modify its
behavior accordingly. Also, context information
history is valuable, as shown by context-based retrieval
applications. A dynamic and historical model allows
applications to fully exploit the richness of context
information.

Although these problems are recurrent we lack conceptual
models and tools to describe solutions to these problems.

Overview Of Paper
This paper presents a context toolkit aimed at developing
reusable solutions to address these problems and thus make
it easier to build context-enabled applications. The
inspiration for this context toolkit is the success of toolkits
in graphical user interface (GUI) development. The context
toolkit builds upon the widget concept from GUI toolkits.
In the same way GUI toolkits insulate the application from
interaction details handled by widgets, the context toolkit
insulates the application from context sensing mechanics
through widgets. We first introduce the concepts
underlying the context toolkit and describe applications it
allowed us to build. We discuss details of the toolkit
implementation that address specific problems of
distribution, heterogeneity and dynamism that are not
addressed by GUI toolkits. We conclude with future plans
for the evolution of the context toolkit.

DESIGNING A CONTEXT TOOLKIT
The context toolkit we have developed relies on the
concept of context widgets. Just as GUI widgets mediate
between the application and the user, context widgets
mediate between the application and its operating
environment. We analyze the benefits of GUI widgets,
introduce the concept of context widget, detail its benefits,
and explain how context-enabled applications are built
using these widgets.

Learning From Graphical User Inter face
Widgets
It is now taken for granted that GUI application designers
and programmers can reuse existing interaction solutions
embodied in GUI toolkits and widget libraries. GUI
widgets (sometimes called interactors) span a large range of
interaction solutions: selecting a file; triggering an action;
choosing options; or even direct manipulation of graphical
objects [11].

GUI toolkits have three main benefits:

• They hide specifics of physical interaction devices
from the applications programmer so that those devices
can change with minimal impact on applications.
Whether the user points and clicks with a mouse or
fingers and taps on a touchpad or uses keyboard
shortcuts doesn’t require any changes to the
application.

• They manage the details of the interaction to provide
applications with relevant results of user actions.
Widget-specific dialogue is handled by the widget
itself, and the application often only needs to
implement a single callback to be notified of the result
of an interaction sequence.

• They provide reusable building blocks of presentation
to be defined once and reused, combined, and/or
tailored for use in many applications. Widgets provide
encapsulation of appearance and behavior. The
programmer doesn’t need to know the inner workings
of a widget to use it.

Although toolkits and widgets are known to have
limitations such as being too low-level or lacking
flexibility, they provide stepping stones for designing and
building user interfaces and developing tools such as User
Interface Management Systems (UIMS). With context
widgets, we aim at providing similar stepping stones for
designing and building context-enabled applications.

What Is A Context Widget?
A context widget is a software component that provides
applications with access to context information from their
operating environment. In the same way GUI widgets
insulate applications from some presentation concerns,
context widgets insulate applications from context
acquisition concerns.

Context widgets provide the following benefits:

• They hide the complexity of the actual sensors used
from the application. Whether the presence of people is
sensed using Active Badges, floor sensors, video

In Proceedings of CHI'99, Pittsburgh, PA, May 15-20, 1999, (to appear). ACM Press.

image processing or a combination of these should not
impact the application.

• They abstract context information to suit the expected
needs of applications. A widget that tracks the location
of a user within a building or a city notifies the
application only when the user moves from one room
to another, or from one street corner to another, and
doesn’t report less significant moves to the application.
Widgets provide abstracted information that we expect
applications to need the most frequently.

• They provide reusable and customizable building
blocks of context sensing. A widget that tracks the
location of a user can be used by a variety of
applications, from tour guides to office awareness
systems. Furthermore, context widgets can be tailored
and combined in ways similar to GUI widgets. For
example, a Presence widget senses the presence of
people in a room. A Meeting widget may rely on a
Presence widget and assume a meeting is beginning
when two or more people are present.

These benefits address issues 1 and 2 listed in the
introduction. From the application’s perspective, context
widgets encapsulate context information and provide
methods to access it in a way very similar to a GUI toolkit.
However, due to the characteristics of context and notably
issues 3 and 4 mentioned in the introduction, distribution
and dynamicity, the context toolkit has some unique
features. We briefly describe the similarities with GUI
toolkits and point out some major differences.

How Applications Use Context Widgets
Context widgets have a state and a behavior. The widget
state is a set of attributes that can be queried by
applications. For example, an IdentityPresence widget has
attributes for its location, the last time a presence was
detected, and the identity of the last user detected.
Applications can also register to be notified of context
changes detected by the widget. The widget triggers
callbacks to the application when changes in the
environment are detected. The IdentityPresence widget for
instance, provides callbacks to notify the application when
a new person arrives, or when a person leaves.

Context widgets are basic building blocks that manage
sensing of a particular piece of context. We expect full-
fledged context-aware applications to take advantage of
multiple types of context information and rely on a rich
dynamic model of their operating environment. To this end,
our widget toolkit provides means of composing widgets.
For example, a widget designed to detect the kind of
activity people in a classroom are engaged in could
combine the information provided by presence widgets and
activity sensing widgets using, for instance, audio and
video analysis. Based on information provided by widgets
such as the number of people in the room, their location in
the room, the speakers, activity in the front of the
classroom, the composite widget would detect activities
such as lecture, group study, exam, etc.

So far, context widgets are very similar to GUI widgets,
however there are important differences:

• Context widgets live in a distributed architecture
because context may need to be acquired from multiple
distributed sources. Widgets rely on three kinds of
distributed components: generators that acquire context
information, interpreters that abstract it and servers
that aggregate information. Applications, widgets and
the components they rely upon may be distributed.
This feature of the toolkit addresses issue 3 listed in
the introduction

• Context widgets monitor environmental information
that may be needed at any time by an application. Thus
a context widget is active all the time, and its
activation is not, as with GUI widgets, driven by
applications. This feature, along with other
characteristics of the toolkit described in the
implementation section, addresses issue 4.

The context toolkit aims at enabling easier development of
context-enabled applications. To assess our objective, we
have built context widgets we expect applications to need
frequently and have developed applications based on these
widgets.

BUILDING CONTEXT WIDGETS
In this section, we describe two of the context widgets that
we have built. These context widgets aim at surveying an
indoor environment. We show examples of their use in the
applications described in the next section. The first widget,
IdentityPresence, is attached to a specified location and
senses the surrounding environment for the presence of
people and their identity. The second widget, Activity,
continuously monitors the surrounding environment for
significant changes in activity level.

The IdentityPresence Widget
The IdentityPresence widget is placed in a pre-specified
location and reports the arrival and departure of people at
that location. The identities of the people arriving and
departing as well as the times at which the events occurred
are also made available to applications. The information
this widget provides is useful for any location-aware
application like tour guide or applications that track people.

The IdentityPresence widget provides applications with the
attributes and callbacks listed in Table 1.

Widget Class IdentityPresence

Attributes

Location Location the widget is
monitoring

Identity ID of the last user sensed

Timestamp Time of the last arrival

Callbacks

PersonArrives (location,
identity, timestamp)

Triggered when a user arrives

PersonLeaves (location,
identity, timestamp)

Triggered when a user leaves

Table 1. Definition of the IdentityPresence widget.

All widgets acquire context information through
generators. Generators are components that encapsulate a

In Proceedings of CHI'99, Pittsburgh, PA, May 15-20, 1999, (to appear). ACM Press.

single sensor or a set of closely related sensors and the
software that acquires raw information from the sensor(s).

The IdentityPresence widget could be implemented using
any number of generators, including voice recognition,
Active Badges, video/image recognition, keyboard and
login information, or even a combination of these. The
generator that is chosen affects neither the definition of the
widget nor any application that uses the widget. The
attributes and callbacks provided by the widget are
independent from the actual implementation, thus
sheltering the application from the specifics of the sensors
used. Our current implementation of the IdentityPresence
widget uses Dallas Semiconductor’s i Buttons [4], passive
tags with unique identifiers and storage and computing
capabilities or alternatively passive TIRIS RF tags [15].

The Activity Widget
The Activity widget senses the current activity level at a
location such as a room. It may be used to sense the
presence of people if they are active in a room. While it can
not provide reliable presence information by itself, it
provides additional environmental information and can, for
example, sense that people are actively discussing in the
room. The widget is instantiated at a pre-specified location.
Applications that use the Activity widget specify parameters
for receiving callbacks, as seen in the table below.

The attributes and callbacks supported by the Activity
widget are listed in table 2.

Widget Class Activity

Attributes

Location Location the widget is monitoring

Timestamp Time of the last change in activity level

AverageLevel Activity level (none, some, a lot)
averaged over a user-specified time
interval

Callbacks

ActivityChange
(location,
AverageLevel,
timestamp)

Triggered when the activity level
changes from one level to another

Table 2. Attributes and callbacks of the Activity widget.

The Activity widget has been implemented with a
microphone, but like the IdentityPresence widget, it could
be implemented with any appropriate generator, such as an
infrared sensor, video image analysis, or a combination of
these.

Other Context Widgets
We have also constructed other widgets as part of the
context toolkit. The NamePresence widget is similar to the
IdentityPresence widget. Instead of providing an artificial
user ID for a user whose presence has been detected, this
widget provides the user’s actual name. The PhoneUse
widget provides information about whether a phone is
being used and the length of use. The MachineUse widget
provides information about when a user logs onto or off of
a computer, his identity, and length of her computing

session. The GroupURLPresence widget provides a URL
relevant to the research group a user belongs to when her
presence is detected. An application describing its use is
given in the following section. The completeness and
overall structure of the entire context widget library is an
interesting open research issue.

BUILDING APPLICATIONS WITH THE CONTEXT
TOOLKIT
In this section, we describe three applications we have built
to assess the actual benefits of our context toolkit. To
reiterate, the expected advantages of the toolkit are to hide
complexity, provide appropriate interpretation of context
information and ease overall construction through reusable
widgets.

In/Out Board
Motivation
The first application we have built is the electronic
equivalent of a simple in/out board that is commonly found
in offices. The board is used to indicate which members of
the office are currently in the building and which are not
(see figure 1). In both the academic and corporate world,
we often find ourselves trying to determine whether
someone is in the office in order to interact with her.

Figure 1. Screenshot of the in/out board application. The dot
next to a user name is green if the user is in and red if she is out.

Context Information
The in/out board application is an example of a context-
viewing application. It gathers information about the
participants who enter and leave the building and displays
the information to interested users. The context information
is a participant’s identity and the time at which they arrived
or departed. This application is interested in events when
people pass the single entry point into the building.
Therefore, only a single instance of the IdentityPresence
widget is required, and is located at the entrance to the
building. Through the use of this widget, the context-
sensing infrastructure is successful in hiding the details of
how the context is sensed from the application developer.

Future Extensions
With the use of additional IdentityPresence widgets located
in strategic areas (e.g., offices, meeting spaces) within the
building, the in/out board application can easily be
extended to a person tracking application. It would display
the location of users throughout the building on a map. By

In Proceedings of CHI'99, Pittsburgh, PA, May 15-20, 1999, (to appear). ACM Press.

adding an IdentityPresence widget to sense the identity of
the user watching the display, we would be able to tailor
the display to show only information relevant for this user,
such as close colleagues or members of the same research
group.

Information Display
Motivation
For our second application, we built an information display,
similar to those found in the literature [7, 19]. We aim to
show that the context toolkit can be used to reimplement
existing context-enabled applications. This application
displays information relevant to the user’s location and
identity on a display adjacent to the user. It activates itself
as someone approaches it, and the information it displays
changes to match the user, her research group, and location.

Context Information
The context information used by the information display is
the location of the display, the identity of the user, the
research group the user belongs to and information that is
interesting to that research group. A single
GroupURLPresence widget is used to supply the
information to this application. The widget installed nearest
to the display is used. When a user’s presence is detected
by the widget, it makes a URL about the user’s research
group available to the interested application. The
application shows the contents of the URL on the nearby
display.

This application does not deal with the details of how the
context information is sensed, meaning the widget is
successful at hiding the complexity of the sensing
infrastructure. As well, the widget provides the appropriate
information and detail to the application. For example, this
application could have been implemented with an
IdentityPresence widget. This would have required the
application to determine what research group the nearby
user was in and find information relevant to that research
group. However, using the GroupURLPresence widget
alleviated the need to perform these extra steps.

Future Extensions
The information display application provides the
beginnings of a simple tour guide application, where the
user is mobile and displays are static. Essentially, a basic
context-aware tour guide [1, 6] displays information
relevant to the location and the identity of the person
viewing the information. The information display is a very
simple example of a tour guide with only one location of
interest, but with additional displays and information
providing widgets, it could be extended to build a full tour
guide application.

DUMMBO Meeting Board
Motivation
For our third application, we chose to augment an already
existing system, the DUMMBO (Dynamic Ubiquitous
Mobile Meeting Board) project at Georgia Tech [2].
DUMMBO is an instrumented digitizing whiteboard that
supports the capture and access of informal and
spontaneous meetings. Captured meetings consist of the ink

written to and erased from the whiteboard as well as the
recorded audio discussion. After the meeting, a participant
can access the captured notes and audio by indicating the
time and date of the meeting.

In the initial version of DUMMBO, recording of a meeting
was initiated by writing or erasing activity on the physical
whiteboard. In the revised, context-aware version of
DUMMBO, we wanted to have recording triggered when a
group of two or more people gathered around the
whiteboard. We also wanted to use information about when
people were present around the whiteboard and their
identities to help in visualizing and accessing captured
material.

Context Information
This application belongs to the context-aware class of
applications. It uses context to modify its own behavior
(e.g., automatically starting the recording when enough
people are standing around the whiteboard). The context
information used is the participants’ identities, the time
when they arrived at or left the mobile whiteboard, and the
location of the mobile whiteboard. The application uses
multiple NamePresence widgets, one for each location
where DUMMBO could be moved to in our research lab,
and one on DUMMBO itself to detect the presence of
users. Once again, the application could have used
IdentityPresence widgets but the NamePresence widgets
provided the appropriate level of detail, requiring fewer
steps on the part of the programmer and application.

Adding Context to DUMMBO
This application was augmented on both the capture side
and the access side. On the capture side, information about
how many people were close to the whiteboard is used to
determine when to start the audio and notes recording.
During the access phase, participants can use context
information such as the location, time and date of the
meeting, and the names of participants at the meeting to
retrieve the recorded meeting information. This extra
context makes it easier for participants to retrieve the
meeting information at a later date.

Again, the details of the widget are kept transparent from
the programmer. The programmer, another member of our
research group, simply needed to determine which widgets
he was interested in and handle the information those
widgets were providing. In all, the application only
required changing/adding 25 lines of Java code (out of a
total of 892 lines) and modifications were localized in a
single class file. The significant modifications include 2
lines added to use the context toolkit and widget, 1 line
modified to enable the class to handle callbacks, and 17
lines that are application specific. Comparatively, the size
of the context toolkit is about 12400 lines of Java code.

To achieve such easy retrofitting of context handling
capabilities in existing applications, the context toolkit
manages the mechanics of context acquisition and
abstraction. We now turn to the relevant implementation
details of these mechanics.

In Proceedings of CHI'99, Pittsburgh, PA, May 15-20, 1999, (to appear). ACM Press.

CONTEXT TOOLKIT IMPLEMENTATION DETAILS
We have previously outlined the application programmer’s
interface to the context toolkit by describing what is a
context widget, giving some examples of widgets and
demonstrating context-enabled applications that make use
of the widgets. There are some important requirements
(points 3 and 4 in the introduction) for the context toolkit
having to do with its distribution, composition,
heterogeneity and dynamism that we will address in this
section.

Distribution
The context infrastructure must accommodate distribution
of applications, widgets and the components they rely
upon, across a network. Applications may require the
services of several widgets distributed across different
machines, as described in the DUMMBO application.

In addition, widgets themselves may be distributed. A
widget may consist of any number of three types of
components: generators, interpreters, and servers (see
figure 2). A generator, as described earlier, acquires raw
context information from hardware or software sensors and
provides it to widgets.

Figure 2. A context widget and supporting components.
Arrows represent the data flow. In this example, the
widget gets raw context data from two generators G1
and G2 and requests the services of an interpreter I.

An interpreter abstracts raw or low-level context
information into higher level information. An example of
this was seen in the DUMMBO application where the basic
NamePresence widget used a generator to obtain a user ID
for the user whose presence was detected. An interpreter is
used to abstract the raw ID information into an actual user
name. Interpreters can be used for more than simply
converting between types of data. They play an important
role in widget composition.

Composition
Context widgets can be composed to provide richer context
information while reusing existing widgets. For example,
composing the IdentityPresence and Activity widgets could
provide a simple Meeting widget. By combining the
information about the presence of people at a location and
an estimate of their activity, one can roughly detect if the
people are engaged in a meeting or if they are just sitting in
the same place and no collaborative activity is taking place.
The Meeting widget would gather information from the
IdentityPresence and Activity widgets assigned to the room.
It would rely on an interpreter to analyze the information

provided by both widgets and deduce if a meeting is taking
place. The interpreter could assume a meeting is taking
place if the number of people in the room is at least two
and the activity level is “a lot”. The Meeting widget would
provide this information to applications through two
callbacks: MeetingStarts and MeetingEnds.

When dealing with generators that provide uncertain
information such as video image analysis techniques,
interpreters are used to assess the validity of the
information provided. They perform either simple filtering
(such as rejecting any result whose confidence factor is less
than a given threshold) or comparison and consolidation of
the results from multiple uncertain generators.

Taking composition one step further, a server is a special
kind of widget that collects, stores and interprets
information from other widgets. To pursue the GUI widget
analogy, it is similar to a container widget like a frame or a
dialog box: it maintains a high-level model of related
components. Servers are typically used to model context
information of real world entities such as users or places.
By acting as a gateway between applications and
elementary widgets, servers hide even more complexity
within the context infrastructure. For example, in the
PersonFinder (extended in/out board) application, rather
than have the application subscribe to every
Identi tyPresence widget in the building, it simply
subscribes to the building server and receives the same
desired information.

As well, to address the privacy concerns that are raised by
context-sensing, a server can be used to encapsulate a
privacy manager for its given domain (whether it is a
person, place, or thing). For example, if applications access
their desired context information via servers, then users
who don’t want particular information made public can
modify the privacy restrictions for their personal server to
keep that information from anyone but themselves or a
trusted group.

Communicating Across Heterogeneous Components
To allow easy communication between the components that
make up a widget and between widgets and applications,
we needed to support a single, simple communications and
language model. To allow as many systems as possible to
employ our context toolkit, we only assume that the
underlying system supports TCP/IP.

To further this goal of platform independence, our
communication model uses the fairly ubiquitous HTTP
protocol and our language model uses the ASCII-based
Extensible Markup Language (XML) [16]. ASCII text is
the lowest common denominator available on a wide
variety of platforms for data transfer and XML allows us to
describe structured data using text. Implementations of
HTTP servers and clients libraries that can interpret XML
are beginning to appear and have minimal resource
requirements, allowing communication across a wide
variety of platforms and devices.

Handling Dynamism
Context information is inherently dynamic. As changes in
the environment are detected, applications must be given

In Proceedings of CHI'99, Pittsburgh, PA, May 15-20, 1999, (to appear). ACM Press.

the opportunity to easily adapt to these changes. This
requires two components: providing access to the
information using a standard mechanism and allowing
access to only the desired information. Furthermore,
context information history has value for applications as
well as widgets and must be preserved.

The communications model just described aids in allowing
applications access to the changing information. To ease
programmatic access to context information, we provide a
standard subscription mechanism, enabling an application
to be notified of context changes, and a polling mechanism,
enabling an application to inquire about context
information.

Context widgets allow applications to specify conditions
that must be fulfilled before they will be notified of a
change in the context. This shifts the task of filtering
unwanted information to the context infrastructure and
away from the application. An example of this can be seen
in the DUMMBO application. This application needs to
know where the mobile whiteboard is at all times, so it
must subscribe to all NamePresence widgets in the
building. However, it is only interested in callbacks where
presence of the mobile whiteboard is detected. By
specifying this condition in the subscription, the application
can more efficiently deal with the information that it is
particularly interested in and not have to deal with all the
presence detections for other objects and people.

For our context toolkit to be able to support context-based
retrieval applications, all context widgets store historical
data in a database. Applications or interpreters can retrieve
past data from a widget. Aside from context-based
retrieval, we expect this feature to be useful for building
interpreters that rely on patterns of behavior deduced from
machine learning techniques.

RELATED WORK
Previous research efforts have proposed infrastructures for
context-enabled applications. We review them in this
section and point out the differences with the context
toolkit.

Schilit’s infrastructure for ubiquitous computing is
probably the earliest attempt at providing services for
handling context [14]. In this work, context information is
primarily location. Location is acquired from an Active
Badges infrastructure. Active Map objects gather context
information related to a physical spatial area and make it
available to client applications. This approach assumes that
a location can be assigned to all context information.

The stick-e framework addresses the needs of context-
aware notes used, for example, to make up a tour guide [3].
Notes use SGML tags to register interest in context
information and set conditions on context values that will
trigger the display or execution of the note. Although this
model is potentially wide ranging, it is mainly aimed at
displaying context information or triggering simple actions.
The mandatory use of notes as clients of context
information makes it difficult to retrofit an existing
application with context sensing or even build an

application that modifies its behavior in response to a
changing environment.

The Situated Computing Service (SitComp) has objectives
very close to ours: it seeks to insulate applications from
sensors used to acquire context [8]. A SitComp service is a
single server that encapsulates context acquisition and
abstraction and provides both an event-driven and a query
interface to applications. The sensors used are location-
tracking tags very similar to Active Badges. Our work goes
one step further by advocating a modular structure made of
several widgets dedicated to handling specific pieces of
context information and laying the grounds for reusable
context handling building blocks.

Although simply aimed at conveying context information
to other users in a CSCW setting, the AROMA prototype
shares an interesting feature with our context toolkit [12]. It
provides “abstractor” objects that abstract high-level
context information from the raw information captured by
sensors.

Finally, CyberDesk was inspirational to the work presented
in this paper [5]. Although it only deals with one piece of
context information, namely the user’s current text
selection, it proposes a modular structure that separates
context acquisition, context abstraction mechanisms and
actual client services.

FUTURE WORK
The context toolkit we have presented still needs additional
work to accommodate the wide range of context-enabled
applications. Areas we want to explore are extending the
toolkit capabilities, structuring the widgets design space,
and heuristic rules for designing with context widgets.

To extend the toolkit capabilities, we need to address the
issue of resource discovery and temporal composition.
Resource discovery enables applications to adapt
transparently to changes in the infrastructure. Widgets,
generators, or interpreters may become active or inactive,
migrate from machine to machine and even modify the set
of capabilities they provide. Resource discovery will allow
us to better handle the dynamism requirement. In the
current version of our toolkit, context widgets can be
composed to provide richer information. However, we
don’t provide means to impose temporal constraints within
the composition mechanism. In a setting where context
information changes rapidly, combination of information
from different widgets may need to occur in a guaranteed
time frame.

Work on the context widget library we have described in
this paper is only in its initial stage. Although it has proved
useful in its current state, the number and variety of
widgets should be increased to effectively support a wide
range of context-enabled applications. An immediate
concern is to devise a structure for organizing widget
classes in the library. Identifying the basic pieces of context
information needed by applications, defining widgets to
handle them and then combining these widgets will allow
us to enhance the widget library and construct more diverse
applications. So far, Presence, Identity, and Activity appear

In Proceedings of CHI'99, Pittsburgh, PA, May 15-20, 1999, (to appear). ACM Press.

to be core types of context information and we plan to build
upon this list.

CONCLUSION
We have presented a toolkit that supports the development
of context-enabled applications. The context toolkit was
inspired by the success of GUI toolkits and has similar
benefits: building blocks called context widgets provide
reusable solutions for context handling; by delegating
details of context handling to the toolkit, we achieve
separation of concerns between context sensing and
application semantics.

To assess the validity of our toolkit-based approach, we
have developed a small number of context widgets and
example applications described in this paper. We were able
to build new context-enabled applications, replicate
canonical context-enabled applications found in the
literature and retrofit an existing application with context
capabilities.

More information on the work described in this paper is
a v a i l a b l e o n t h e w e b a t
http://www.cc.gatech.edu/fce/contexttoolkit/. The context
toolkit software is available from the same web page.

ACKNOWLEDGMENTS
We wish to thank the members of the FCE group at
Georgia Tech for helpful feedback and comments. Jen
Mankoff’s comments inspired the concept of context
widget. This work is supported in part by an NSF ESS
grant EIA-9806822.

REFERENCES
1 . Abowd, G.D., Atkeson, C.G., Hong, J., Long, S.,

Kooper, R. and Pinkerton, M. Cyberguide: A Mobile
Context-Aware Tour Guide. ACM Wireless Networks
3, 421-433.

2 . Brotherton, J. DUMMBO, Dynamic, Ubiquitous,
Mobi le Meet ing Board . Avai lable a t
http://www.cc.gatech.edu/fce/dummbo/.

3. Brown, P.J. The Stick-e Document: A Framework for
Creating Context-Aware Applications. Electronic
Publishing 9, 1 (September 1996), 1-14.

4. Dallas Semiconductor. iButton Home Page. Available
at http://www.ibutton.com/.

5. Dey, A., Abowd, G.D. and Wood, A. CyberDesk: A
Framework for Providing Self-Integrating Context-
Aware Services, in Proceedings of the 1998 Intelligent
User Interfaces Conference (San Francisco CA,
January 1998), ACM Press, 48-54.

6. Fels, S., Sumi, Y., Etani, T., Simonet, N., Kobayshi, K.
and Mase, K. Progress of C-MAP: A Context-Aware
Mobile Assistant, in Proceedings of AAAI 1998 Spring
Symposium on Intelligent Environments (Palo Alto,
CA, March 1998), AAAI Press, 60-67.

7 . Finney, J. and Davies, N. FLUMP, The FLexible
Ubiquitous Monitor Project. Available at
http://www.comp.lancs.ac.uk/computing/staff/joe/pape
rs/flumpdh.html.

8. Hull, R., Neaves, P. and Bedrod-Roberts, J. Towards
Situated Computing, in Proceedings of the 1s t
International Symposium on Wearable Computers,
ISWC '97 (Cambridge MA, October 1997), IEEE
Press.

9. Lamming, M. and Flynn, M. Forget-me-not: Intimate
Computing in Support of Human Memory, in
Proceedings of FRIEND 21: International Symposium
on Next Generation Human Interfaces (Tokyo, 1994),
125-128.

1 0 . Lancaster University. The Active Badge Tourist
A p p l i c a t i o n . A v a i l a b l e a t
http://www.comp.lancs.ac.uk/computing/research/mpg
/most/abta_project.html.

1 1 . Myers, B.A. A New Model for Handling Input.
Transactions on Information Systems 8, 3, 289-320.

12. Pederson, E.R. and Sokoler, T. AROMA: Abstract
Representation of Presence Supporting Mutual
Awareness, in Proceedings of CHI '97 (Atlanta GA,
March 1997), ACM Press, 51-58.

13. Rhodes, B.J. The Wearable Remembrance Agent, in
Proceedings of 1st International Symposium on
Wearable Computers, ISWC '97 (Cambridge MA,
October 1997), IEEE Press, 123-128.

14. Schilit, W.N. System Architecture for Context-Aware
Mobile Computing. Ph.D. Thesis, Columbia
University, 1995.

15. Texas Instruments. TIRIS Products and Technology.
A v a i l a b l e a t
http://www.ti.com/mc/docs/tiris/docs/rfid.htm.

1 6 . W3C XML Working Group. Extensible Markup
Language (XML) 1 .0 . Ava i l ab le a t
http://www.w3.org/TR/1998/REC-xml-19980210.

17. Want, R., Hopper, A., Falcao, V. and Gibbons, J. The
Active Badge Location System. ACM Transactions on
Information Systems 10, 1, 91-102.

18. Want, R., Schilit, B., Adams, N., Gold, R., Petersen,
K., Ellis, J., Goldberg, D. and Weiser, M. T h e
PARCTAB Ubiquitous Computing Experiment.
Technical Report CSL-95-1, Xerox Palo Alto Research
Center, 1995.

1 9 . Weiser, M. The Computer for the 21st Century.
Scientific American 265, 3, 66-75.

