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Abstract

Activity recognition fits within the bigger framework
of context awareness. In this paper, we report on our
efforts to recognize user activity from accelerometer
data. Activity recognition is formulated as a classifica-
tion problem. Performance of base-level classifiers and
meta-level classifiers is compared. Plurality Voting is
found to perform consistently well across different set-
tings.

Introduction
A triaxial accelerometer is a sensor that returns a real val-
ued estimate of acceleration along thex, y andz axes from
which velocity and displacement can also be estimated. Ac-
celerometers can be used as motion detectors (DeVaul &
Dunn 2001) as well as for body-position and posture sens-
ing (Foerster, Smeja, & Fahrenberg 1999). Apple’s iLife
Fall Detection sensor which embeds an accelerometer and a
microcomputer to detect falls, shocks or jerky movements is
a good example. Active research is being carried out in ex-
ploiting this property for determining usercontext(Randell
& Muller 2000). Advances in miniaturization will permit
accelerometers to be embedded within wrist bands, bracelets
and belts and to wirelessly send data to a mobile computing
device that can use the signals to make inferences. User con-
text can be utilized for ambulatory monitoring (Makikawaet
al. 2001; Foerster, Smeja, & Fahrenberg 1999) and is the key
to minimizing human intervention in ubiquitous computing
applications.

Making devices aware of the activity of the user fits into
the bigger framework of context awareness. Ubiquitous
computing is centered around the idea of provisioning ser-
vices to the user in a seamless manner. Provisioning ser-
vices to the user based on his location and/or activity is an
active research area. While the research thrust is on au-
tomatically determining user location (Wantet al. 1992;
Harter & Hopper 1994; Priyantha, Chakraborty, & Balakr-
ishnan 2000), determining user activity is getting a lot of
attention lately. Attempts have been made at recognizing
user activity from accelerometer data (Lee & K.Mase 2002;
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Bussmannet al. 2001). The most successful and exhaus-
tive work in this regard is that of Bao & Intille (2004). In
their experiments, subjects wore 5 biaxial accelerometers on
different body parts as they performed a variety of activi-
ties like walking, sitting, standing still, watching TV, run-
ning, bicycling, eating, reading etc. Data generated by the
accelerometers was used to train a set of classifiers, which
included decision trees (C4.5), decision tables, naive Bayes
classifier and nearest-neighbor algorithm found in the Weka
Machine Learning Toolkit (Witten & Frank 1999). Decision
tree classifiers showed the best performance, recognizing ac-
tivities with an overall accuracy of 84%.

We have attempted to recognize activities using a single
triaxial accelerometer worn near the pelvic region. Activity
recognition is formulated as a classification problem. In ad-
dition to analyzing the performance of base-level classifiers
(Bao & Intille 2004), we have studied the effectiveness of
meta-level classifiers (such as boosting (Freund & Schapire
1996), bagging (Breiman 1996), plurality voting, stacking
using ODTs, and stacking using MDTs (Todorovski & Dze-
roski 2003)) in improving activity recognition accuracy. We
have tried to answer the following questions: (1) Which are
the best classifiers for recognizing activities; is combining
classifiers a good idea? (2) Which among the selected fea-
tures/attributes are less important than others? (3) Which
activities are harder to recognize?

In the following sections, we describe our data collection
methodology and our approach to recognize activity from
accelerometer data, followed by results.

Data Collection
Data from the accelerometer has the following attributes:
time, acceleration alongx axis, acceleration alongy axis and
acceleration alongz axis. We used a triaxial accelerometer
CDXL04M3 marketed by Crossbow Technologies, which is
capable of sensing accelerations up to 4G with tolerances
within 2%. The accelerometer is mounted on a hoarder
board (which samples at 50Hz), as shown in Figure 1. The
accelerometer was worn near the pelvic region while the
subject performed activities. The data generated by the ac-
celerometer was transmitted to an HP iPAQ (carried by the
subject) wirelessly over Bluetooth. The Bluetooth transmit-
ter is wired into the accelerometer. A Bluetooth enabled HP
iPAQ running Microsoft Windows was used. The Windows’



Figure 1: Data Collection Apparatus

Figure 2: Data Lifecycle

Bluetooth library was used for programming Bluetooth. The
data was then converted to ASCII format using a Python
script.

We collected data for a set of eight activities:

• Standing

• Walking

• Running

• Climbing up stairs

• Climbing down stairs

• Sit-ups

• Vacuuming

• Brushing teeth.

The activities were performed by two subjects in multiple
rounds over different days. No noise filtering was carried
out on the data.

Label-generation is semi-automatic. As the users per-
formed activities, they were timed using a stop watch. The
time values were then fed into a Perl script, which labeled
the data. Acceleration data collected between the start and
stop times were labeled with the name of that activity. Since
the subject is probably standing still or sitting while he
records the start and stop times, the activity label around
these times may not correspond to the actual activity per-
formed.

Figure 2 shows the lifecycle of the data. To minimize mis-
labeling, data within 10 s of the start and stop times were
discarded. Figure 3 shows the x-axis readings of the ac-
celerometer for various activities.

Feature extraction
Features were extracted from the raw accelerometer data us-
ing a window size of 256 with 128 samples overlapping
between consecutive windows. Feature extraction on win-
dows with 50% overlap has demonstrated success in previ-
ous work (Bao & Intille 2004). At a sampling frequency
of 50Hz, each window represents data for 5.12 seconds. A
window of several seconds can sufficiently capture cycles
in activities such as walking, running, climbing up stairs
etc. Furthermore, a window size of 256 samples enabled
fast computation of FFTs used for one of the features.

Four features were extracted from each of the three axes
of the accelerometer, giving a total of twelve attributes. The
features extracted were:

• Mean

• Standard Deviation

• Energy

• Correlation.

The usefulness of these features has been demonstrated
in prior work (Bao & Intille 2004). The DC component of
the signal over the window is the mean acceleration value.
Standard deviation was used to capture the fact that the range
of possible acceleration values differ for different activities
such as walking, running etc.

The periodicity in the data is reflected in the frequency
domain. To capture data periodicity, the energy feature was
calculated. Energy is the sum of the squared discrete FFT
component magnitudes of the signal. The sum was divided
by the window length for normalization. Ifx1, x2, ... are the

FFT components of the window then,Energy=
∑|w|

i=1
|xi|2

|w| .



Figure 3: X-axis readings for different activities

Correlation is calculated between each pair of axes as the
ratio of the covariance and the product of the standard devia-
tionscorr(x, y) = cov(x,y)

σxσy
. Correlation is especially useful

for differentiating among activities that involve translation
in just one dimension. For example, we can differentiate
walking and running from stair climbing using correlation.
Walking and Running usually involve translation in one di-
mension whereas Climbing involves translation in more than
one dimension.

Data Interpretation
The activity recognition algorithm should be able to recog-
nize the accelerometer signal pattern corresponding to every
activity. Figure 3 shows the x-axis readings for the different
activities. It is easy to see that every activity does have a
distinct pattern. We formulate activity recognition as a clas-
sification problem where classes correspond to activities and
a test data instance is a set of acceleration values collected
over a time interval and post-processed into a single instance
of {mean, standard deviation, energy, correlation}. We eval-
uated the performance of the following base-level classifiers,
available in the Weka toolkit:
• Decision Tables

• Decision Trees (C4.5)

• K-nearest neighbors

• SVM

• Naive Bayes.
We also evaluated the performance of some of the state-

of-the-art meta-level classifiers. Although the overall per-
formance of meta-level classifiers is known to be better

than that of base-level classifiers, base-level-classifiers are
known to outperform meta-level-classifiers on several data
sets. One of the goals of this work was to find out if com-
bining classifiers is indeed the right thing to do for activity
recognition from accelerometer data, which to the best of
our knowledge, has not been studied earlier.

Meta-level classifiers can be clustered into three frame-
works: voting (used in bagging and boosting), stack-
ing (Wolpert 1992; Dzeroski & Zenko 2004) and cascad-
ing (Gama & Brazdil 2000). In voting, each base-level clas-
sifier gives a vote for its prediction. The class receiving the
most votes is the final prediction. In stacking, a learning
algorithm is used to learn how to combine the predictions
of the base-level classifiers. The induced meta-level clas-
sifier is then used to obtain the final prediction from the
predictions of the base-level classifiers. The state-of-the-art
methods in stacking are stacking with class probability dis-
tributions using Meta Decision Trees (MDTs) (Todorovski
& Dzeroski 2003), stacking with class probability distribu-
tions using Ordinary Decision Trees (ODTs) (Todorovski &
Dzeroski 2003) and stacking using multi-response linear re-
gression (Seewald 2002). Cascading is an iterative process
of combining classifiers: at each iteration, the training data
set is extended with the predictions obtained in the previ-
ous iteration. Cascading in general gives sub-optimal results
compared to the other two schemes.

To have a near exhaustive set of classifiers, we chose the
following set of classifiers: Boosting, Bagging, Plurality
Voting, Stacking with Ordinary-Decision trees (ODTs) and
Stacking with Meta-Decision trees (MDTs).

• Boosting (Meir & Ratsch 2003) is used to improve the
classification accuracy of any given base-level classifier.



Boosting applies a single learning algorithm repeatedly
and combines the hypothesis learned each time (using
voting), such that the final classification accuracy is im-
proved. It does so by assigning a certain weight to each
example in the training set, and then modifying the weight
after each iteration depending on whether the example
was correctly or incorrectly classified by the current hy-
pothesis. Thus final hypothesis learned can be given as

f(x) =
T∑

t=1

αtht(x),

whereαt denotes the coefficient with which the hypothe-
sisht is combined. Bothαt andht are learned during the
Boosting procedure. (Boosting is available in the Weka
toolkit.)

• Bagging (Breiman 1996) is another simple meta-level
classifier that uses just one base-level classifier at a time.
It works by training each classifier on a random redistri-
bution of the training set. Thus, each classifier’s training
set is generated by randomly drawing, with replacement,
N instances from the original training set. HereN is the
size of the original training set itself. Many of the origi-
nal examples may be repeated in the resulting training set
while others may be left out. The final bagged estimator,
hbag(.) is the expected value of the prediction over each of
the trained hypotheses. Ifhk(.) is the hypothesis learned
for training samplek,

hbag(.) =
1
M

M∑
k=1

hk(.).

• Plurality Voting selects the class that has been predicted
by a majority of the base-level classifiers as the final pre-
dicted class. There is a refinement of the plurality vote al-
gorithm for the case where class probability distributions
are predicted by the base-level classifiers. In this case, the
probability distribution vectors returned by the base-level
classifiers are summed to obtain the class probability dis-
tribution of the meta-level voting classifier:

PML(x) =
1
|C|

∑
c∈C

Pc(x).

• Stacking with ODTs is a meta-level classifier that uses the
results of the base-level classifiers to predict which class
the given instance belongs to. The input to the ODTs are
the outputs of the base-level classifiers i.e. class probabil-
ity distributions (CPDs) —pCj

(ci|x), as predicted over
all possible class valuesci, by each of the base-level clas-
sifiersCj . The output of the stacked ODT is the class-
prediction for the given test instance.

• Stacking with MDTs (Todorovski & Dzeroski 2003)
learns a meta-level decision tree whose leaves consist of
each of the base level classifiers. Thus, instead of speci-
fying which class the given test instance belongs to, as in
a stacked ODT, an MDT specifies which classifier should
be used to optimally classify the instance. The MDTs are
also induced by a meta-level data set that consists of the
CPDs —pCj

(ci|x).

All the above meta-level classifiers, except MDTs, are
available in the Weka toolkit. We downloaded the source
code for MDTs and compiled it with Weka.

Alternate approaches to activity recognition include use
of Hidden Markov Models(HMMs) or regression. HMMs
would be useful in recognizing a sequence of activities to
model human behavior. In this paper, we concentrate on rec-
ognizing a single activity. Regression is normally used when
a real-valued output is desired, otherwise classification is a
natural choice. Signal processing can be helpful in automat-
ically extracting features from raw data. Signal processing,
however, is computationally expensive and not very suitable
for resource constrained and battery powered devices.

Results
All the base-level and meta-level classifiers mentioned
above were run on data sets in four different settings:

Setting 1: Data collected for a single subject over
different days, mixed together and cross-validated.

Setting 2: Data collected for multiple subjects over
different days, mixed together and cross-validated.

Setting 3:Data collected for a single subject on one day
used as training data, and data collected for the same subject
on another day used as testing data.

Setting 4: Data collected for a subject for one day used
as training data, and data collected on another subject on
another day used as testing data.

Data for settings 1 and 2 is independently and identically
distributed (IID), while that for settings 3 and 4 is not. Run-
ning classifiers on both IID and non-IID data is important
for a thorough comparison.

We did a 10-fold cross-validation for each of the clas-
sifiers in each of the above settings. In a 10-fold cross-
validation, the data is randomly divided into ten equal-sized
pieces. Each piece is used as the test set with training done
on remaining 90% of the data. The test results are then av-
eraged over the ten cases.

Table 1 shows the classifier accuracies for the four set-
tings respectively. It can be seen that Plurality Voting per-
forms the best in the first three settings, and second best in
the fourth setting. Boosted/Bagged Naive Bayes, SVM and
kNN perform consistently well for the four settings. Boosted
SVM outperforms the other classifiers by a good margin in
the fourth setting. In general, meta-level classifiers perform
better than base level classifiers.

The scatter-plot in Figure 4 shows the correlation in the
performance of each classifier on IID and non-IID data. Val-
ues on x-axis correspond to the accuracy of classifiers aver-
aged over settings 1 and 2, while the values on y-axis corre-
spond to the accuracy of classifiers averaged over settings 3
and 4. Plurality Voting has the best performance correlation
(0.78).

Plurality voting combines multiple base-level classifiers
as opposed to boosting and bagging which use a single



Table 1: Accuracy of classifiers for the four different settings

Accuracy(%)Classifier
Setting1 Setting2 Setting3 Setting4

Naive Bayes(NB) 98.86 96.69 89.96 64.00
Boosted NB 98.86 98.71 89.96 64.00
Bagged NB 98.58 96.88 90.39 59.33
SVM 98.15 98.16 68.78 63.00
Boosted SVM 99.43 98.16 67.90 73.33
Bagged SVM 98.15 98.53 68.78 60.00
kNN 98.15 99.26 72.93 49.67
Boosted kNN 99.15 99.26 72.93 49.67
Bagged kNN 99.15 99.26 70.52 46.67
Decision Table(DT) 92.45 91.91 55.68 46.33
Boosted DT 97.86 98.53 55.68 46.33
Bagged DT 93.30 94.85 55.90 46.67
Decision Tree(DTr) 97.29 98.53 77.95 57.00
Boosted DTr 98.15 98.35 77.95 57.00
Bagged DTr 97.29 95.22 78.82 63.33
Plurality Voting 99.57 99.82 90.61 65.33
Stacking (MDTs) 99.00 99.26 89.96 64.00
Stacking (ODTs) 98.86 98.35 84.50 64.00

base-level classifier. Voting can therefore outperform boost-
ing/bagging on certain datasets. From our results, it is clear
that plurality voting does better than boosting and bagging
consistently, although by a small margin. Plurality voting
outperforming MDTs and ODTs is not very intuitive. A
careful analysis however explains this finding. (Todorovski
& Dzeroski 2003) showed that MDTs and ODTs usually
outperform plurality voting on datasets where the error di-
versity of base-level classifiers is high. Plurality Voting on
the other hand outperforms MDTs and ODTs on datasets
where base-level classifiers have high error correlation (low
error diversity), the cutoff being approximately 50%. The er-
ror correlation between a pair of classifiers is defined as the
conditional probability that both classifiers make the same
error given one of them makes an error:

φ(Ci, Cj) = p(Ci(x) = Cj(x)|Ci(x) 6= c(x)∨Cj(x) 6= c(x)),

whereCi(x) andCj(x) are the predictions of classifiersCi

andCj for a given instancex andc(x) is the true class ofx.
We calculated error correlation between all the base-level

classifiers (which is defined as the average of pairwise er-
ror correlations) for all the four settings. The error corre-
lation came out to approximately 52%. This high value of
error correlation may explain why Plurality Voting does bet-
ter than MDTs and ODTs on accelerometer data.

We wanted to find out which features/attributes among the
selected ones are less important than the others. To this end,
we ran the classifiers on the data with one attribute removed
at a time. Table 3 shows the average number of misclassi-
fications for data of setting 2, with one attribute dropped at
a time. The Energy attribute turns out to be the least sig-
nificant. There is no significant change in accuracy when
Energy attribute is dropped. Since we could recognize activ-

Figure 4: Performance correlation for IID and non-IID data
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ities with fairly high accuracy, we did not explore the possi-
bility of adding more features/attributes.

In order to find out which activities are relatively harder
to recognize, we manually analyzed the confusion matrices
obtained for different data sets for different classifiers. The
confusion matrix gives information about the actual and pre-
dicted classifications done by the classifiers. The confusion
matrix in Table 2 is a representative of the commonly ob-
served behavior in setting 3. It shows that climbing stairs
up and down are hard to tell apart. Brushing is often con-
fused with standing or vacuuming and is in general hard to
recognize.

Conclusions and Future work

We found that activities can be recognized with fairly high
accuracy using a single triaxial accelerometer. Activities
that are limited to the movement of just hands or mouth (e.g
brushing) are comparatively harder to recognize using a sin-
gle accelerometer worn near the pelvic region. Using meta-
classifiers is in general a good idea. In particular, combin-
ing classifiers using Plurality Voting turns out to be the best
classifier for activity recognition from a single accelerome-
ter, consistently outperforming stacking. We also found that
energy is the least significant attribute.

An interesting extension would be to see whether ”short
activities” (e.g opening the door with a swipe card) can be
recognized from accelerometer data. These could be instru-
mental in modeling user behavior. Along similar lines, it
would be interesting to find out how effective an ontology
of activities could be in helping classify hard-to-recognize
activities.



Table 2: Representative Confusion Matrix for Setting 3

Classified AsActivity
Standing Walking Running Stairs Up Stairs Down Vacuuming Brushing Situps

Standing 63 0 0 0 0 0 0 0
Walking 0 44 0 1 0 0 0 0
Running 0 0 17 16 20 0 0 0
Stairs Up 0 0 0 9 12 0 0 0
Stairs Down 0 0 0 19 0 0 0 0
Vacuuming 0 0 0 0 0 45 0 0
Brushing 18 0 0 0 0 15 0 0
Situps 0 0 0 0 0 7 0 24

Table 3: Effect of dropping an attribute on classification ac-
curacy

Attribute Average no. of misclassi-
fications

Drop None 14.05
Drop Mean 21.83
Drop Standard Deviation 32.44
Drop Energy 14.72
Drop Correlation 28.38
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