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Abstract- -A generic framework for the automated classification of human move- 
ments using an accelerometry monitoring system is introduced. The framework was 
structured around a binary decision tree in which movements were divided into 
classes and subclasses at different hierarchical levels. General distinctions between 
movements were applied in the top levels, and successively more detailed subclas- 
sifications were made in the lower levels of the tree. The structure was modular and 
flexible: parts of the tree could be reordered, pruned or extended, without the 
remainder of the tree being affected. This framework was used to develop a classifier 
to identify basic movements from the signals obtained from a single, waist-mounted 
triaxial accelerometer. The movements were first divided into activity and rest. The 
activities were classified as falls, walking, transition between postural orientations, or 
other movement. The postural orientations during rest were classified as sitting, 
standing or lying. In controlled laboratory studies in which 26 normal, healthy 
subjects carried out a set of basic movements, the sensitivity of every classification 
exceeded 87%, and the specificity exceeded 94%; the overall accuracy of the system, 
measured as the number of correct classifications across all levels of the hierarchy, 
was a sensitivity of 97.7% and a specificity of 98.7% over a data set of 1309 
movements. 
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1 Introduction 

ADVANCES IN miniature sensor and wireless technologies have 
resulted in interest in the development of systems for monitoring 
subjects over long periods of time using wearable monitoring 
units (BOUTEN et al., 1997; ASADA et al., 2003; PARK and 
JAYARAMAN, 2003; JOVANOV et al., 2003; KORHONEN et al., 
2003). Within this, there is a trend towards wearable systems that 
go beyond traditional physiological monitoring to include 
measures of environmental health, functional performance and 
activities related to daily living (WINTERS et al., 2003; MATHIE 
et  al., 2002). 

Wireless accelerometry systems have been used to measure 
parameters of environmental health (MATHIE e t  al., 2004a). 
They have been used as a means of indirectly assessing 
metabolic energy expenditure (BOUTEN e t  al., 1996; No and 
KENT-BRAUN, 1997; STEELE et al., 2000); to measure various 
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parameters of movement, such as step rate and postural sway 
(CURRIE e t  at., 1992; EVANS et at., 1991; MAYAGOITIA et al., 
2002; KAMEN et al., 1998); and in smart personal alarm systems 
to detect falls (PETELENZ et  al., 2002; LEHRMAN et al., 2002). 

Accelerometers are useful because they are very small, low- 
cost instruments that provide quantitative measurements. The 
accelerometers that are most widely used in these applications 
respond to both acceleration due to gravity and acceleration due 
to body movement. This makes them suitable for measuring 
posmral orientations as well as body movements. 

With the exception of metabolic energy expenditure calcula- 
tions, the applications described above require knowledge of 
the movements that are being performed, in a free-living context, 
the movements are generally not known and thus need to be 
identified from the accelerometer signals. Monitoring systems 
using multiple body-worn accelerometers have been used to 
classify postures and activities, including standing, sitting, lying, 
walking, stair climbing and cycling, with a high degree of 
accuracy (AMINIAN e t  al., 1999; FAHRENBERG et al., 1997; 
FOERSTER and FAHRENBERG, 2000; UITERWAAL et al., 1998; 
VELTINK et al., 1996). 

Researchers have proposed different approaches to classifica- 
tion, including fixed-threshold classification (TAMURA et al., 
1997; AMINIAN et at., 1999; FAHRENBERG et al., 1997; 
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FOERSTER and FAHRENBERG, 2000), reference-pattern-based 
classification (VELTINK et al., 1996; MAKIKAWA and 
MURAKAMI, 1996), pattern recognition strategies that use 
statistical algorithms (VELTINK et al., 1996), conventional or 
fuzzy logic (WINTERS et al., 2003) or artificial neural networks 
(AMINIAN e t  al., 1995; KIANI et al., 1997). 

These studies have provided support for the viability of  
classifying movements using the signals from accelerometers. 
However, each group has developed its own algorithms and 
methods to discriminate between a specific set o f  movements 
using a custom-designed monitoring system. The highly specific 
systems and methodologies make it difficult to make direct 
comparisons between the approaches of  the different investiga- 
tors. The other difficulty is that the algorithms tend to have been 
specifically designed to deal with a particular domain of  
activities, and it is not easy to adapt the methods that have 
been presented to work in a different environment or with a 
different set o f  movements.  

KIANI et al. (1997) presented a more systematic approach to 
classification, based on a formal, hierarchical, decision tree. 
Each node of  the tree had multiple branches leading to all o f  the 
movements  of  interest at the next level o f  the hierarchy. The 
decision at each node was obtained by the measurement of  
parameters such as average, norm and standard deviation and 
then classification on the basis of  these parameters. At each 
node, all the possible subclassifications were considered, and the 
most likely candidate was selected. Although this structure 
allowed a logical flow of  decisions, it still had the drawback 
that a movement  branch could not be added to, nor removed 
from, a node without affecting the algorithm by which all the 
other movements from that node were classified. 

in this paper, we present a framework for the classification of  
movement  of  free-living subjects using the signals obtained 
from an accelerometry monitoring system. The purpose of  the 
framework is to allow hierarchical classification of  an arbitrary 
set o f  movements in such a way that new movements can easily 
be added to the classification, the accuracy of  each individual 
classification decision can easily be evaluated, and new methods 

for classifying particular movements can be introduced without 
the need to redesign other parts o f  the classifier. 

The framework was then employed to develop a classifier for 
identifying basic movements performed in the home environment 
using a single waist-mounted triaxial accelerometer (TA) unit. 

2 Framework for movement classification 

The purpose of  the framework is to classify activities and 
postural orientations of  subjects using the signals obtained from 
an accelerometry-based monitoring system. Once an activity or 
posture has been identified, then relevant parameters can be 
extracted from the movement.  

Our classification framework is based on a hierarchical, 
binary tree. The structure of  the classifier is illustrated in 
Fig. 1. Broad classifications are made in the top levels o f  the 
tree, and more detailed subclassifications are made in the lower 
levels o f  the tree. Movements are subclassified until either the 
required level o f  detail or the limit of  what can be achieved using 
the monitoring system is reached. 

The decisions made higher up the tree are more certain than 
the decisions made further down the tree, as any classification 
uncertainty from the higher branches is transferred to the lower 
branches. 

Categories at the same hierarchical level must be independent, 
and each set o f  categories must encompass every possible case of  
the parent category. This requires the presence o f a  fallback case 
that is accepted if all the other classification possibilities 
are rejected. The existence of  a fallback case is built into the 
framework and can be easily identified from the flowchart 
structure, it can be a generic case, such as the category of  
'other movement ' ,  or an explicit case, as is the category 'sub- 
movement  2'  o f  Fig. 1. Subcategories from the same parent node 
that are at the same hierarchical level are tested sequentially, 
until either a category is selected or the fallback case is reached. 

Use of  a binary decision tree provides the classifier with a 
modular, flexible structure. Movement categories can be added 

Fig. 1 
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and removed without affecting other parts of  the tree. Individual 
algorithms can also be changed without the need to alter the 
other algorithms, and, conversely, other valid logical flows can 
be used to create different decision classifiers from the existing 
algorithms. 

Using binary decisions ensures that only one (simple) deci- 
sion is made at each node. This can speed up the processing and 
allows the reliability of  each decision to be measured easily, it 
also means that all decision nodes have exactly two branches, 
which makes the tree easy to read and helps to ensure that no 
valid logic paths have been inadvertently omitted. 

3 Utilising the f ramework 

A classifier can be developed for a particular situation, using 
the classification framework, by following a six-step process. 
These steps are described in the following Sections. 

3.1 Step 1" define requirements 

The purpose for which the classifier is required should be 
clearly defined. The reasons why continuous, unsupervised 
monitoring and processing are necessary should be identified. 
The movements and classes of  movements to be detected by the 
system need to be determined. 

3.2 Step 2: select instrumentation 

The choice of  instrumentation dictates the movements that 
can be detected. For instance, an accelerometer attached at the 
waist can provide monitoring of whole-body movements, but 
cannot provide information on movements of  the wrist. The 
monitoring instrumentation needs to be selected so that identi- 
fication of all of  the important movements can be consistently 
and reliably achieved. 

3.3 Step 3: arrange movements within tree 

For the movements to be placed inside a binary classification 
tree, they need to be ordered hierarchically from the most general 
through to the most specific. This is achieved by identifying any 
parent-child relationships between categories and structuring 
these into the tree. independent movements stemming from the 
same parent node are placed at the same hierarchical level. 

The ordering of movements at the same hierarchical level is 
important, as careful ordering can lead to improved processing 
efficiency. The choice of  ordering depends on the context of the 
classification. For example, movements can be ordered from 
the most to the least likely, to minimise the overall amount of  
processing required, or they can be ordered such that the 
classifier tests for critical movements first. 

3.4 Step 4" develop algorithms 

Once the structure has been established, an algorithm needs to 
be developed for each of the binary decision nodes. The 
algorithms depend on the choice of instrumentation, which 
affects the signals that are received. 

To develop an algorithm to detect a particular movement, it is 
necessary to develop a signal signature for that movement. This 
can be done explicitly by identifying particular characteristics of  
the signal, such as the value of the signal, that can then be 
compared with a threshold, or by developing a template pattern 
and comparing the signal with this. it can also, be carried out 
implicitly using a neural network or a fuzzy template classifier. 
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3.5 Step 5: evaluate the classifier 

Once the classifier has been developed, its performance needs 
to be evaluated. There are two stages to the evaluation: evalua- 
tion of individual algorithms and evaluation of the complete 
classifier, it is also important to check that the classification tree 
actually encompasses the full scope of the movements intended 
for monitoring. 

The modular structure means that the performance of every 
algorithm can be assessed independently, and its accuracy can be 
determined. In the context of  the complete classifier, algorithms 
that occur lower down the tree or later on at the same level can 
have no effect on algorithms that occur earlier or higher in the tree. 
However, changing algorithms higher up the tree, or earlier on 
at the same level, can change the movements that are passed to 
a later node for classification and, hence, change the overall 
effective classification rate. For example, if a classification tree 
has been designed to identify activities of  walking, jumping and 
falling from the set of  all movements, and walking is the first 
activity that is tested for, then the walking-detection algorithm 
will be presented with instances of  jumping and falling as well as 
other movements, if, however, the system tests for walking aiter 
testing for falling and jumping, then the walking detection 
algorithm should never be presented with instances of  falling or 
jumping, and this can change the effective classification accuracy. 

Therefore, in addition to assessment of  the performance of 
each individual algorithm, the complete classifier should be 
evaluated. This evaluation should occur in the environment 
and with the types of  subject for which the classifier has been 
designed, and the overall limits of  accuracy of the classification 
tree should also be established. 

3.6 Step 6: refine the classifier 

The signal-based classification system can be refined by the 
addition of an overlay to introduce memory, so that individual 
movements are not classified in isolation. There are many 
different approaches that can be employed. For instance, a 
rule-based system can be applied that checks sequences of  
movements determined by the classifier and detects and corrects 
impossible sequences. A more sophisticated approach could 
involve the development of  a movement template for the 
subject in which the likelihood of sequences of movements is 
determined, and the set of  possible movements following a given 
movement sequence is determined. This can be achieved using 
methods such as Markov modelling. This system could then be 
used dynamically to prune branches that represent options that 
are not possible (and even those that are highly improbable) for 
each decision. Branches could also be dynamically reordered so 
that more likely classifications are tested first. 

Steps 3-6 form an iterative process in which development of  a 
later step can prompt changes to an earlier step, in which case, all 
the subsequent steps need to be reworked. This process needs to 
be repeated until a classification system has been designed that is 
fit for purpose. 

In the following Sections, we demonstrate the application of 
this framework for monitoring basic daily movements using a 
single, waist-mounted triaxial accelerometer. 

4 Classification of movements  using a 
waist -mounted triaxial accelerometer 

4.1 Monitoring requirements 

Our long-term aim in developing an accelerometry moni- 
toring system was to develop a practical system that could be 
used to monitor and assess movements in free-living subjects. 
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Of particular importance is the detection of fall events, so that 
the system can be used to provide an automated, intelligent 
personal alarm service, in addition, we wanted to know whether 
the subject was able to rise again after the fall; whether there was 
any movement by the subject after the fall; and the postural 
orientation of the subject after the fall: lying face up, face down 
or on the side. This was because the posture and activities of the 
subject following a fall provide important information on the 
severity of  the fall and on the state of  the subject. This required 
the system to be able to distinguish between upright and lying 
postures, and between subposmres of  lying. 

Secondly, we wanted to be able longitudinally to monitor 
parameters of  movement that are sensitive to changes in health 
status and increasing risk of  falling. This required the automatic 
identification of basic movements fundamental to independent 
living, including various posmral orientations, walking and 
transitions between postures, particularly rising from, and 
sitting down into, a chair. 

4.2 Instrumentation 

A single, waist-mounted triaxial accelerometer (TA) was 
chosen to perform the measurements. This instrumentation was 
designed for ease of  use, comfort and convenience of the wearer. 
The unit was composed of two orthogonally mounted biaxial 
accelerometers*(range-4- 10 g; frequency response: 0-500 Hz; 
noise level: 6 .12x10-3g  rms), a push button, a 1.5V AA 
battery and a wireless transmitter contained in a small, light 
pager case that measured 71 x 50 x 18 mm and weighed 50 g. The 
unit was designed to be clipped onto a belt or clothing at the waist. 
The TA unit sampled accelerations due to gravity and body 
movements, at 45 Hz, and then transmitted the data to a receiver 
unit and thence to a personal computer, where the data were 
processed and stored (MATHIE et al., 2003; CELLER et al., 2000). 

This instrument was designed for research purposes, and data 
were transmitted continuously rather than being buffered or 
processed on board the wearable unit. However, the unit 
consumed only 15 mA from a 1.5 V source when transmitting 
0 dBm into a 50 f~ surface-mounted planar antenna, which meant 
that one 1.5 V alkaline battery provided 80 h of continuous 
transmission before needing to be replaced. 

4.3 Arrangement of  movements 

The movements were first grouped into two mutually exclu- 
sive classes of activity and rest. In each class, the relationships 
between the movements were determined. Each pair of move- 
ments was identified as either two independent movements, or as 
two movements in a parent-child relationship, in this system, no 
overlap between movements was permitted, unless the move- 
ments were in a parent-child relationship. Child movements 
were drawn below parent movements, independent movements 
were drawn side-by-side with other movements having the same 
number of  ancestor movements. This resulted in a hierarchical 
structure of  increasingly detailed submovements, which is 
shown in Fig. 2a. In this Figure, the arrows indicate parent- 
child dependencies, and the dotted lines represent the borders 
between different levels in the hierarchy. This hierarchical 
diagram was used to guide the development of  the flowchart. 

Activities of  falling, walking and posmral transitions were 
determined to be at the same level in the hierarchy. As these three 
activities did not represent the complete domain of activities, a 
fourth category of 'other' was added. The 'other' category 
included movements such as bending down or reaching up. 
These four categories now covered the complete domain of 
activities. Similarly, posmral orientations of  upright and lying 

*ADXL210, Analog Electronics 
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were set at the same level in the hierarchy, and an additional 
posture, 'inverted', was added so that the classification covered 
the complete domain of posmral orientations. An inverted 
orientation would indicate that the person's head was below 
the feet. This situation would be expected to occur rarely, but 
could, for example, happen i fa  person were to fall down a flight 
of  stairs. 

Of these activities, falls were placed on the left, so as to be the 
first activity tested, as this was the most critical activity and 
should be detected the most rapidly and without any possibility 
of  the movement being misclassified as another activity. 
Walking was placed next, for reasons of  processing efficiency, 
because the algorithm that was used to detect periods of  walking 
was simpler and faster than the algorithm that was used to detect 
transitions. Once the activities at the same level had been 
ordered, the flowchart for this part of  the tree could be 
constructed. 

Fig. 2b shows the final structure that was developed for 
classification of the movements. The dotted lines on the 
flowchart show the hierarchical levels that were developed and 
are shown in Fig. 2a. 

4.4 Development of  algorithms 

An algorithm was developed for each decision node. The 
algorithms were developed and tested using data collected from 
26 normal, healthy subjects (seven female, 19 male; mean age 
30.5 years-4-6.3 years standard deviation) in a controlled lab- 
oratory environment. The movements were performed in a set 
sequence: stand; lie supine; lie left side; lie face down; lie fight 
side; stand; sit; stand; walk along a level corridor; stand; sit; stand; 
walk up a flight of  stairs; walk down a flight of  stairs; stand; sit; 
stand; walk along a level corridor; and stand. Each of the resting 
postures was held for 30 s, with the exception of the later periods 
of  quiet standing between activities, which were held for 10 s. 
Subjects wore the TA unit at the waist, above the right superior 
anterior iliac spine, while performing the movements. 

An investigator supervised performance of the routine. Each 
movement was timed using a stopwatch. All acceleration data 
were time stamped and stored in the personal computer for 
retrospective analysis. 

A small number of additional, unspecified actions were 
performed by the subjects during the sequence, such as taking 
a step during quiet standing or adjusting their seating position. 
These activities were also included in the analysis. 

The periods of quiet standing were included to separate the 
individual movement, to ensure that there was no overlap in the 
signals from the different movements. The use of  periods of  
quiet standing between movements also meant that the move- 
ment signals were not affected by the order in which the 
movements were performed. 

Additionally, a preliminary data set of 'simulated' falls and 
stumbles was collected from four consenting subjects. Each 
subject performed four falls onto a carpeted floor from positions 
of  quiet standing and while walking across the room. 

Some of the recorded signals were randomly selected for use 
in developing the algorithms. The remainder were set aside as a 
test set for use in evaluation. 

The different movements were distinguished in time using the 
activity detection classifier (MATHIE et al., 2003b). This algo- 
rithm identified periods of activity and periods of  rest in the 
signal. Each of these periods of  activity and rest was then 
classified as a particular movement using the classification 
framework. The time period of each classified movement was 
compared with the movement or movements that actually 
occurred during that period, i f  the classified movement actually 
occurred during that period (even if it started or stopped outside 
that period), then it was deemed to be correctly classified, i f  the 
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classified movement did not occur during that period, then it was 
deemed to be incorrectly classified. This allowed the accuracy of  
the algorithms to be quantified. 

Medical & Biological Engineering & Computing 2004, Vol. 42 

Each algorithm was developed in the following manner. 
Simple threshold-based classification techniques were applied 
wherever possible. For example, activity and rest were 
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discriminated by integration of the area under the acceleration 
curves every second, to produce a measure of  metabolic energy 
expenditure, and then comparison of the measured value with a 
predetermined threshold, i f  the measured value exceeded the 
preset threshold, then the subject was classified as engaged 
in activity. Otherwise, a classification of resting was made 
(MATHIE et al., 2003b, 2002). An upright posture and lying 
were discriminated using the measured tilt angle of  the subject. 
Lying substates were discriminated using the measured angle of  
rotation of the subject when lying. 

i f  simple, threshold-based classification techniques did not 
give satisfactory results (sensitivity and specificity both greater 
than 95% in the control set), then more sophisticated, pattern- 
based techniques were developed. Standing and sitting were 
discriminated using a probability rule-based system that used a 
range of parameters, including tilt angle, duration over which the 
subject maintained the posture, measured metabolic energy 
expenditure and previous and next activities, and determined 
the probabilities that the subject was sitting and standing. The 
state with the higher probability was then selected as the actual 
state of the subject. Falls were also identified using a rule-based 
algorithm. Sit-to-stand and stand-to-sit transitions were identi- 
fied by comparison of the measured signals with signal templates 
for the two movements. 

4.5 Laboratory  evaluation o f  classif ier 

Once algorithms had been developed that gave satisfactory 
performance on the development data set (described above), 
they were applied to the test set. Their performances were 
evaluated by measurement of the true and false positive 
classification rates. The classification accuracies for each of 
the algorithms were determined in the same way as was de- 
scribed in the preceding Section and are presented in Table 1. 

Using this instrumentation, periods of  activity and rest could 
be reliably and easily distinguished using the signals from the 
TA unit, as could upright and lying postures and subposmres of  
lying. Each of the activities in level 3 of the hierarchy (refer to 
Fig. 2) could be identified with a high degree of accuracy from 
within this fixed domain of movements. All the movements in 
levels 4 and 5 of  the hierarchy were classified, but some of the 
algorithms were more involved, and the results were not as 
reliable as for parent classes higher in the tree. Sitting and 

standing postures and transitions between the two postures 
could be identified, but with less confidence than was achieved 
in the other classifications. This was owing to inherent limita- 
tions in the monitoring instrumentation that resulted in an 
overlap in the signal patterns for sitting and standing postures. 

5 Discussion 

A generic framework for the classification of movements was 
introduced and applied to process basic movement data from a 
single, waist-mounted triaxial accelerometer. The classifier that 
was developed gave excellent results when applied to the 
classification of specific movements performed in a controlled 
environment. 

There are clear limits on what can be achieved in a free-living 
monitoring environment using a single, waist-mounted TA. A 
greater number of  instruments provide more information that 
allows more accurate classifications at a more detailed level, but 
a single instrument is more practical for continuous, long-term 
monitoring, as the simplicity and ease-of-use of  the single 
instrument facilitates compliance and minimises cost. 

Positioning at the waist was chosen because this location 
provides the most useful information on subject movements, 
being close to the centre of  the body (MATHIE et al., 2004a). 
Although other approaches, such as wrist-bands and pendants, 
require less subject compliance as they need never be removed, 
they are less able to provide reliable information on whole body 
movements and are more susceptible to artifact (such as accel- 
erations due to swinging or knocking against other objects). 
Moreover, the waist is also a location that has been found to be 
comfortable for, and useable by, subjects, in a recent field study, 
six elderly subjects (four female and two male) each wore a 
waist-mounted unit every day for a three month period and 
reported that they found the unit comfortable to wear and not 
inconvenient to use (MATHIE et al., 2004b). 

The single-instrument system located at the waist was able 
accurately to distinguish between activity and rest in the free- 
living environment, it could also distinguish between upright 
and lying postures and detect periods of  walking with a high 
degree of accuracy. The ability to make more detailed distinc- 
tions, such as between sitting and standing, was limited in this 
context. Overall, the single instrument was able to generate a 
reasonable picture of  the basic movements of  the free-living 
subject. 

Table 1 Classification results" obtained during controlled laboratory studies for  specific domain o f  movements and for  free movement. Some 
collected data were used to develop algorithms. Remainder o f  data, included here, were used to evaluate algorithms. Overall accuracy measure 
represents number o f  correct decisions made by classifie~ Average performance indicates mean accuracy across 9 diffbrent classification 
categories" 

Controlled laboratory study 

number of number of 
Level Classification Method subjects movement sensitivity specificity 

2 activity (activity/rest) fixed threshold 13 143 99% 94% 
3 fall pattern matching 2 8 80.5% 100% 
3 walking expert system ÷ 26 156 100% 100% 

pattern matching 
3 upright (upright/lying) fixed threshold 23 184 100% 100% 
4 upright-lying transition pattern matching 26 104 100% 100% 
4 lying-lying transition pattern matching 23 184 98.9% 100% 
4 sitting (sitting/standing) expert system 26 255 95.1% 97.7% 
4 lying subpostures fixed threshold 23 92 98.9% 100% 
5 sit-stand transition pattern matching 26 183 93.5% 98.1% 

(sit-to-stand/stand-to-sit) 
Overall 

performance 
Average 

performance 

1309 97.7% 98.7% 

97.0% 98.9% 
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sit ~ stand-to-sit  
• i f  the rest state after the transition is standing then reclassify the stand-to-sit transition as a sit-to-stand transition. 
• Else, if the rest state after the transition is sitting then reclassify the stand-to-sit transition as other movement. 
• Else (the next rest state is upright, but not subclassified) classify the next rest state and then return to classify the activity. 

stand ~ sit-to-stand 
• i f  the rest state after the transition is sitting then reclassify the sit-to-stand transition as a stand-to-sit transition. 
• Else if the rest state after the transition is standing then reclassify the sit-to-stand transition as other movement. 
• Else (the next rest state is upright, but not subclassified) classify the next rest state and then return to classify the activity. 

sit ~ wa lk  
• i f  the duration o f  the sitting period is short and the activity before the sitting period is other movement then reclassify the 

other movement as a sit-to-stand transition and the sitting state as standing. 
• Else assume that the sit-to-stand transition is contained in the same period o f  activity as the walk and was not detected 

separately. 

upright resting state, not subclassified 
• i f  the activity after the upright resting state is walla'ng then classify the upright resting state as standing. 
• Else, if the activity before the upright resting state is a sit-to-stand transition then classify the upright resting state as 

standing. 
• Else, if the activity before the upright resting state is a stand-to-sit transition then classify the upright resting state as 

sitting. 
• Else, if the activity after the upright resting state is a sit-to-stand transition and this is consistent with the next resting state 

then classify the upright resting state as sitting 
• Else, if the activity after the upright resting state is a stand-to-sit transition and this is consistent with the next resting state 

then classify the upright resting state as standing. 
• Else, if the activity before the upright resting state is a lying-to-upright transition then classify the upright resting state as 

sitting. 
• Else classify the upright resting state as the same as the previous resting state, and reclassify the activity before the 

upright resting state as other movement. 

upright-to-upright transition, not subclassified 
• Classify the upright-to-upright transition based the resting states before and after the transition. 
• i f  the resting state after the activity is upright but not subclassified then subclassify the resting state and then return to 

classify the activity. 

TAsignal / 

yes 
• nl 0 no 

~up~ght ) yJs ~r~nve~/dm / 
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Fig. 3 Reduction of classification tree for detection of Jalls only. Left-hand branch is for detection of Jalls. Right-hand branch has been left in tree 
because posture of subject immediately following fall can provide important information on severity of Jall 
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The fact that this classification framework is hierarchical and 
uses only binary decisions allows modularisation o f  the decision 
logic. Once a tree classifier has been designed, it is not fixed. The 
framework provides a flexibility that allows the classifier to be 
adapted and modified according to need. The tree can be pruned, 
extended or reordered, and individual algorithms can be 
changed. For example, if  the single waist-mounted TA system 
was to be used in a situation where the only requirement was for 
the detection of  falls, then the tree could be pruned down to the 
instance shown in Fig. 3. Note that we have left the branch 
identifying the lying posture, as this provides important infor- 
mation immediately after a fall. Alternatively, the reduced tree 
o f  Fig. 3 could be expanded to the more comprehensive tree o f  
Fig. 2 without the need to change the existing tree or structure. 

An additional advantage o f  the modular structure of  the 
framework is that algorithms can be replaced without affecting 
any other part o f  the tree, as better or more appropriate 
algorithms are developed. 

Preliminary testing o f  the system on free-living subjects has 
indicated that classification of  basic movements can be achieved 
using this system, although the added complexity o f  the 
unlimited domain o f  activities in the free-living environment 
caused a significant reduction in classification accuracy at the 
most detailed level o f  classification when compared with the 
results obtained in the laboratory. This was particularly evident 
in discrimination between sitting and standing and transitions 
between these two states. 

However, the system could be enhanced for use in a free- 
living context by the addition o f  an overlay to test the validity o f  
the sequence o f  classified movements. For example, an error in 
classification could lead to a classified sequence of  movements 
of  sitting--+ sit-to-stand transition --+ sitting--+ walking. Such a 
sequence is clearly impossible, and this could be detected by a 
sequence-testing overlay. There are many different approaches 
that could be applied to generate such an overlay, including rule- 
based heuristics, fuzzy logic or statistical behavioural modelling, 
such as Markov chaining. Using these latter methods, a template 
o f  daily behaviours could be developed for the patient, similar to 
those that have been proposed for unobtrusive monitoring 
(CELLER et al., 1995). 

The next stage o f  evaluation will be assessment of  the 
classifier technique in a free-living context. Mthough the free- 
living context is far more complex, with an unlimited range 
o f  possible movements, it is expected that the basic postures o f  
upright or lying and distinct movements such as walking or 
falling will still be able to be reliably detected using the system 
developed in this study, although the accuracy of  classification 
o f  movements lower down the hierarchical tree, such as the 
distinction between sitting and standing, would be expected to 
be lower than in this controlled study. 

6 Conclusion 

A generic framework was developed for automatic movement 
classification in unsupervised settings using accelerometric 
monitoring. The framework consists o f  a hierarchical binary 
tree in which general distinctions between movements are 
applied first, and then successively more detailed subclassifica- 
tions are made in the lower levels o f  the tree. The structure is 
modular and flexible: parts o f  the tree can be reordered, pruned 
or extended at will, even during use, without the remainder of  the 
tree being affected. Each binary decision node has associated 
with it an algorithm to perform the classification. The modular 
design allows individual algorithms to be modified or extracted 
for use in other systems. 

Using this framework, a classifier for the identification o f  
basic movements, based on a monitoring system consisting o f  a 
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single, waist-mounted triaxial accelerometer, was developed, in 
laboratory studies in which 26 subjects performed a specific 
routine o f  movements, the system obtained an overall sensitivity 
o f  97.7% and specificity o f  98.7% over a data set of  1309 
movements. 
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