Imrovements to Platt’s SMO Algorithm for SVM
Classifier Design’

S.S. Keerthi S.K. Shevade C. Bhattacharyya & K.R.K. Murthy

ssk@guppy.mpe.nus.edu.sg shirish@csa.iisc.ernet.in cbchiru@csa.iisc.ernet.in murthy@csa.iisc.ernet.in

Technical Report CD-99-14

Control Division
Dept. of Mechanical and Production Engineering
National University of Singapore
Singapore-119260
Ph: (65)-874-4684

' A revised version of this report is under preparation for submission to a journal. We welcome any comments and

suggestions for improving this report.

Abstract

This paper points out an important source of confusion and inefficiency in Platt’s Sequential
Minimal Optimization (SMQO) algorithm that is caused by the use of a single threshold value.
Using clues from the KKT conditions for the dual problem, two threshold parameters are em-
ployed to derive modifications of SMO. These modified algorithms perform significantly faster

than the original SMO on all benchmark datasets tried.

1 Introduction

In the past few years, there has been a lot of excitement and interest in Support Vector Machines[16,
2] because they have yielded excellent generalization performance on a wide range of problems.
Recently, fast iterative algorithms that are also easy to implement have been suggested[9,4,7,3,6].
Platt’s Sequential Minimization Algorithm (SMO)[9,11] is an important example. A remarkable
feature of SMO is that it is also extremely easy to implement. Comparative testing against other
algorithms, done by Platt, have shown that SMO is often much faster and has better scaling
properties.

In this paper we enhance the value of SMO even further. In particular, we point out an
important source of confusion and inefficiency caused by the way SMO maintains and updates a
single threshold value. Getting clues from optimality criteria associated with the KKT conditions
for the dual, we suggest the use of two threshold parameters and devise two modified versions of
SMO that remove the confusion associated with SMO and are much more efficient than the original
SMO. Computational comparison on a number of benchmark datasets shows that the modifications
perform significantly faster than the original SMO in most situations. The ideas mentioned in this
paper can also be applied to the SMO regression algorithm[13]. We will report the results of that
extension in another paper[12].

The paper is organized as follows. In section 2 we briefly discuss the SVM problem formulation,
the dual problem and the associated KKT optimality conditions. We also point out how these
conditions lead to proper criteria for terminating algorithms for designing SVM classifiers. Section
3 gives a short summary of Platt’s SMO algorithm. In section 4 we point out the problem associated
with the way SMO uses a single threshold value, and describe the modified algorithms in section

5. Computational comparison is done in section 6. The appendix gives the pseudo-codes for our

SMO modifications. These pseudo-codes are very similar to those for the SMO given by Platt in

[9]. They are short, and, it is very easy to develop a working code for SVM design using them.

2 The SVM Problem and Optimality Conditions.

The basic problem addressed in this paper is the two category classification problem. The tutorial
by Burges[2] gives a good overview of the solution of this problem using SVMs. Throughout the
paper we will use z to denote the input vector of the support vector machine and z to denote the
feature space vector which is related to z by a transformation, z = ¢(z). As in all SVM designs,
we do not assume ¢ to be known; all computations will be done using only the kernel function,
k(z,z) = ¢(z) - ¢(&), where “” denotes inner product in the z space. Let {(z;,y;)} denote the
training set, where x; is the i-th input pattern and y; is the corresponding target value; y; = 1
means z; is in class 1 and y; = —1 means z; is in class 2. Let z; = ¢(z;). The optimization problem

solved by the support vector machine is:
1
m11r1§||w||2 +CZ£,; (la)
i

subject to: yi(w-z —b)>1-¢& Vi; & >0V (1b)

This problem is referred to as the primal problem. The Lagrangian for this problem is:
1
L= §||w||2 +OY &G+ Y il =& —yi(w- 2 —b)] = Y m&

The KKT optimality conditions are given by:

oL oL .
VwL:w—zi:aiyizi:0; %:;aiyi:(); 8—&:C—ai—7ri:0 Vi,

(673 2 0, (1/7[1 - 57 — yi(w 2y — b)] = 0, T Z 0, 7r7E7 =0 V?

We will refer to the «;’s as Lagrange multipliers. Let us define
w(a) = Z Y%
i

Using Wolfe duality theory[16,2] it can be shown that the «;’s are obtained by solving the following

Dual problem:
1
max W (a) = Zi:ai - Ew(a) cw(a) (2a)

subject to 0 < ; < C, Zaiyi =0 (20)

7

Once the a;’s are obtained, the other primal variables, w, b, £ and 7 can be easily determined
by using the KKT conditions mentioned earlier. It is possible that the solution is non-unique; for
instance, when all «;s take the boundary values of 0 and C, it is possible that b is not unique.
The numerical approach in SVM design is to solve the dual (instead of the primal) because it
is a finite-dimensional optimization problem. (Note that w(a) - w(a) = 32, 32, viyjeia;k(wi, x5).)
To derive proper stopping conditions for algorithms which solve the dual, it is important to write

down the optimality conditions for the dual. The Lagrangian for the dual is:

L= %w(a) cw(a) — 21:0/7 — 27:5,0/7 + 21:'“7(0’7 - C) - ,621:0/71/7

Define
F=w(a) zi —yi = Y ajyik(zi, z;) — yi
J

The KKT conditions for the dual problem are:

oL

:(Fi—ﬂ)yiféﬁrui:o, (57;20, (57;(17;:0, ,u,;20, ui(ai*C):O V?:

These conditions can be simplified by considering three cases.

Case 1. a; =0

6; >0, pi=0 = (F;=B)yi >0 (3a)
Case 2. 0 < oy < C

6i =0, pi=0 = (F—Byi=0 (3b)
Case 3. a; = C

6; =0, p; >0 = (F; =By <0 (3¢)

Define the following index sets at a given a: Iy = {i : 0 < a; < C}H; I = {i : y; = 1,04 = 0};
L={ity=-1a=C}; Is={i:y;=1,0;, =C}; and, Iy = {i : y; = —1,a; = 0}. Note that

these index sets depend on . The necessary conditions in (3a)-(3c) can be rewritten as
BLFNielgULUIy; B>F,VielyUlzUl, (4)

Define:
bup = min{Fi 1€ lpUl U IQ} and by, = maX{Fi 1€ IpUlIzU 14} (5)

Then optimality conditions will hold at some « iff
blow < bup (6)

It is easy to see the close relationship between the threshold parameter b in the primal problem
and the multiplier, 8. In particular, at optimality, § and b are identical. Therefore, in the rest of
the paper 8 and b will denote one and the same quantity.

We will say that an index pair (i,7) defines a violation at « if one of the following sets of
conditions holds:

1€ lgUl3Uuly, jelgUl Ul andF,;>Fj (7(1)
ielyULUL, jelyUl;Ul, and F; < F, (7b)

Note that optimality conditions will hold at « iff there does not exist any index pair (i,7) that
defines a violation.
Since, in numerical solution, it is usually not possible to achieve optimality exactly, there is a

need to define approximate optimality conditions. The condition (6) can be replaced by
biow < bup + 27 (8)

where 7 is a positive tolerance parameter. (In the pseudo-codes given in [9] and the appendix of
this paper, this parameter is referred to as tol.) Correspondingly, the definition of violation can

be altered by replacing (7a) and (7b) by:
1€ lgUIsUly, jelgUl Ul and F1>F7+27' (9(1)

i€lhULUI, jelgUl3Ul, and F; < Fj — 27 (9b)

Hereafter in the paper, when optimality is mentioned it will mean approximate optimality.
Since B can be placed halfway between by, and b,,, approximate optimality conditions will

hold iff there exists a 8 such that (3a)-(3c) are satisfied with a 7-margin, i.e.,

(F; = Blyi > —7 if a; =0 (10a)
(F—B)|<rif 0<a;<C (100)
(Fi—=Byi <7 if a;=0C (10c)

(10a)-(10c) are the approximate optimality conditions employed by Platt[9], Joachims[4] and others.
In [6] we have argued the soundness of using the above approximate conditions as a stopping

criterion for dual algorithms.

3 Platt’s SMO Algorithm.

A number of algorithms have been suggested for solving the dual problem. Traditional quadratic
programming algorithms such as the active set method[5] and interior point algorithms[13] are
not suitable for large size problems because of the following reasons. First, they require that the
kernel matrix k(z;,z;) be computed and stored in memory. This requires extremely large memory.
Second, these methods involve expensive matrix operations such as the Cholesky decomposition of
a large submatrix of the kernel matrix. Third, for practitioners who would like to develop their
own implementation of an SVM classifier, coding these algorithms is very difficult.

Several attempts have been made to develop methods that overcome some or all of these prob-
lems. Vapnik[15] made the observation that if the number of support vectors is small and they
are known beforehand, then one could directly solve the reduced problem involving only the sup-
port vectors and thereby deal with significantly larger datasets. Since the support vectors are not
known, a beginning set of vectors is chosen and chunked into memory and the resulting problem is
solved. Then the remaining vectors are tested for optimality and those that violate are included.
The process is repeated until a solution is obtained. This is referred to as the chunking algorithm.

If the number of support vectors itself is large then the chunking algorithm is also unsuitable.
Osuna et.al.[8] suggested the use of only a subset of the vectors as a working subset and optimize
on the corresponding «;’s while freezing the others. Though the arguments given by Osuna et.al.
about the convergence of the algorithm are incorrect, it is expected that the algorithm will converge
asymptotically as the number of steps goes to infinity. Joachims[4] has developed an efficient
algorithm for SVM by building upon the basic idea given in [8].

Recently Platt suggested an algorithm[9] — Sequential Minimal Optimization (SMO) — that puts
the subset selection in Osuna et.al’s algorithm to the extreme by iteratively selecting subsets only of
size 2. Note that, because of the presence of the equality constraint (see (2b)), at least two variables

need to be chosen for optimization so as to take a step. Platt’s computational experiments[9,11]

have shown SMO to be very much faster than the chunking algorithm; it also scales much better
as problem size grows. The SMO algorithm also fares better than Joachim’s algorithm[4].

Let us give a brief description of the SMO algorithm. Because the working set is only of
size 2 and the equality constraint can be used to eliminate one of the two Lagrange multipliers,
the optimization problem at each step is a quadratic minimization in just one variable. It is
straightforward to write down an analytic solution for it. Complete details are derived in [9]. The
procedure, takeStep (which is a part of the pseudocode given there) gives a clear description of the
implementation. There is no need to recall all details here. We only make one important comment

on the role of the threshold parameter, . As in [9] define the output error on the i-th pattern as
Ei=F—-p

Consistent with the pseudocode of [9] let us call the indices of the two multipliers chosen for
optimization in one step as i9 and i;. A look at the details in [9] shows that to take a step by
varying «;, and a;,, we only need to know E;, — E;, = F;, — F;,. Therefore a knowledge of the
value of B is not needed to take a step.

The method followed to choose i; and i9 at each step is crucial for efficient solution of the
problem. Based on a number of experiments Platt came up with a good set of heuristics. He
employs a two loop approach: the outer loop chooses i9; and, for a chosen i9, the inner loop
chooses 71. The outer loop iterates over all patterns violating the optimality conditions, first only
over those with Lagrange multipliers neither on the upper nor lower boundary, and once all of
them are satisfied, over all patterns violating the optimality conditions to ensure that the problem
has indeed been solved. Clearly, the algorithm spends a large fraction of its time adjusting the
multipliers which take non-boundary values and only a small amount of time with the multipliers
that take boundary values. Appropriately, therefore, Platt maintains and updates a cache for F;
values for indices ¢ corresponding to non-boundary multipliers. The remaining F; are computed as
and when needed.

Let us now see how the SMO algorithm chooses 7;. The aim is to make a large increase in the
objective function. Since it is expensive to try out all possible choices of 4; and choose the one that
gives the best increase in objective function, the index 4y is chosen to maximize |F;, — F;,|. (If we
define p(t) = W (a(t)) where t is a real parameter that denotes the change in the values of y;, o,

and —y;,@;,, and a(t) is the corresponding Lagrangian multiplier vector, then |p'(0)| = |F;, — Ei,|.)

Since F; is available in cache for non-boundary multiplier indices, only such indices are initially used
in the above choice of 4;. If such a choice of i1 does not yield sufficient progress, then the following
steps are taken. Starting from a randomly chosen index, all indices corresponding to non-bound
multipliers are tried as choices for 7, one by one. If still sufficient progress is not possible, all
indices are tried as choices for i1, one by one, again starting from a randomly chosen index. Thus
the choice of random seed affects the running time of SMO; see, for example, the computational
costs mentioned in section 5.

Although a value of § is not needed to take a step, it is needed if (10a)-(10c) are employed for
checking optimality. In the SMO algorithm g is updated after each step. If, after a step involving
(i1,42), one of «;,, a;, (or both) takes a non-boundary value then (3b) is exploited to update the
value of 8. In the rare case that this does not happen, there exists a whole interval, say, [Biow, Bup)s
of admissible thresholds for «;, and «;,. In this situation SMO simply chooses: 8 = (Biow + Bup)/2-

In the next section we will see the problems caused by such a choice.

4 Problems with SMO Algorithm.

SMO is a carefully organized algorithm which has excellent computational efficiency. However,
because of its way of computing and using a single threshold value it can get into a confused end
state and can also become inefficient. Let us illustrate the first issue using a numerical example.

Example 1. Consider the following example where there are 3 patterns:

1 00

1
y1=-1, yp=y3=+1, C= 7 Kernel Matrix = | 0 1 2
0 2 6

Suppose we start from a3 = as = a3 = 0 (the usual point where SMO starts). Calculating F;
we get Fy = 1, F, = F3 = —1. All three indices violate the optimality conditions. (Note that
bow = 1 and by, = —1; SMO uses = 0 to check optimality conditions.) Suppose SMO chooses
indices 1 and 2 for optimization, keeping a3 fixed at 0. It is easy to check that this leads to the
point, &y = ag = C, ag = 0. At this new point we have F} = 3/4, F, = —3/4, F3 = —1/2. Note
that bow = —3/4 and b,, = —1/2 and hence optimality conditions are satisfied. SMO chooses
B = (Fy + Fy)/2 = 0. If this value of § is used to check optimality, the third training pattern

shows a violation of the optimality criterion employed by Platt (i.e., (10)), but actually there is
no violation! Note that any S chosen from the interval, [-3/4, —1/2] would have ensured the
verification of (10).

This example clearly sums up our first concern. Because SMO constrains itself unnecessarily
to a particular single choice of the threshold, 3, it gets into trouble, especially at termination.

The issue raised here appears to be somewhat pathological since the presence of even a single
index 7 with 0 < «; < C forces 8 to be unique and so there is really no serious problem. (Note
that unless C' takes certain extreme values, there is little possibility of not having an index i with
0 < a; < C.) But we would like to point out that there is still a practical problem of inefficiency.
At any instant, the SMO algorithm fixes § based on the current two indices which are being
optimized. However, while checking whether the remaining examples violate optimality or not, it
is quite possible that a different, shifted choice of 8 may do a better job. So, in the SMO algorithm
it is quite possible that, even though « has reached a value where optimality is satisfied (i.e., (8)),
SMO hasn’t detected this because it has not identified the correct choice of B. It is also quite
possible that, a particular index may appear to violate the optimality conditions because (10) is
employed using an “incorrect” value of § although this index may not be able to pair with another
to define a violation. In such a situation the SMO algorithm does an expensive and wasteful search
looking for a second index so as to take a step. We believe that this is a major source of inefficiency

in the SMO algorithm.

5 Modifications of the SMO Algorithm.

In this section we suggest two modified versions of the SMO algorithm, each of which overcomes
the problems mentioned in the last section. As we will see in the computational evaluation of
section 6, these modifications are almost always better than the original SMO algorithm and, in
most situations they give quite a remarkable improvement in efficiency when tested on several
benchmark problems.

In short, the modifications avoid the use of a single threshold value g and the use of (10) for
checking optimality. Instead, two threshold parameters, b,, and by, are maintained and (8) (or

(9)) is employed for checking optimality. The two modifications are adequately described by the

pseudo-codes given in the appendix. We only give some additional pointers that will help to give
an easy understanding of the pseudo-codes. We assume that the reader is familiar with [9] and the
pseudo-codes given there.

1. Suppose, at any instant, F; is available for all 7. Let i_low and i_up be indices such that
F; 10w = biow = maX{Fi 1€ IpUIzU 14} (11a)

Fi_'u,p = bup = mm{F, 1€ lpUl; U IQ} (llb)

Then checking a particular ¢ for optimality is easy. For example, suppose 7 € I1 U I,. We only
have to check if F; < F; jo,, — 27. If this condition holds then there is a violation, and, in that case
SMO'’s takeStep procedure can be applied to the index pair, (i,i_low). Similar steps can be given
for indices in the other sets. Thus, in our approach, the checking of optimality of 75 and the choice
of the second index, 4; go hand in hand, unlike the original SMO algorithm. As we will see below,
we compute and use (i_low, bioy) and (i_up, byp) via an efficient updating process.

2. To be efficient, we would, like in the SMO algorithm, spend much of the effort altering «;,
1 € Iy; cache for Fj, i € I are maintained and updated to do this efficiently. And, when optimality
holds for all i € Iy, only then examine all indices for optimality.

3. Some extra steps are added to the takeStep procedure. After a successful step using a pair
of indices, (ig,7;), let T = Iy U {i1,12}. We compute, partially, (i_low, bioy) and (i_up, byp) using I
only (i.e., use only i € I in (11)). Note that these extra steps are inexpensive because cache for

{F;, i € Iy} is available and updates of F;,, Fj, are easily done. A careful look shows that, since
19 and 77 have been just involved in a successful step, each of the two sets, In (Iy U I Uls) and
IN (IyUI3 U L), is non-empty; hence the partially computed (i_low, bioy) and (i_up, bup) will not
be null elements. Since i_low and i_up could take values from {i9, 71} and they are used as choices
for 4 in the subsequent step (see item 1 above), we keep the values of Fj, and Fj, also in cache.

4. When working only with «;, i € I, i.e., a loop with examineA11=0, one should note that,
if (8) holds at some point then it implies that optimality holds as far as I is concerned. (This is
because, as mentioned in item 3 above, the choice of by, and by, are influenced by all indices in
Iy.) This gives an easy way of exiting this loop.

5. There are two ways of implementing the loop involving indices in Ij only (examineAl11=0).

Method 1. This is in line with what is done in SMO. Loop through all 79 € Iy. For each io,

check optimality and, if violated, choose i; appropriately. For example, if F;, < Fj_ o, — 27 then
there is a violation, and, in that case choose i1 = i_low.

Method 2. Always work with the worst violating pair, i.e., choose i3 = i_low and 47 = i_up.

Depending on which one of these methods is used, we call the resulting overall modification of
SMO as SMO-Modification 1 and SMO-Modification 2.

6. When optimality on I holds, as already said we come back to check optimality on all indices
(examineAll=1). Here we loop through all indices, one by one. Since (bjow,i-low) and (byp,i-up)
have been partially computed using Iy only, we update these quantities as each i is examined. For a
given i, F; is computed first and optimality is checked using the current (bjoy,i_low). For example,
if 1 € I1 Uly and F; < by — 27, then there is a violation, in which case we take a step using
(i,i_low). On the other hand, if there is no violation, then (i_up, b,p) are modified using Fj, i.e, if
F; < by then we do: i_up := i and by, := Fj.

7. Suppose we do as described above. What happens if there is no violation for any ¢ in a loop
having examineA11=117 Can we conclude that optimality holds for all i? The answer is: YES. This
is easy to see from the following argument. Suppose, by contradiction, there does exist one (i, j)
pair such that they define a violation, i.e., they satisfy (9). Let us say, ¢ < j. Then j would not
have satisfied the optimality check in the above described implementation because F; would have,
earlier than j is seen, affected either the calculation of bioy and/or by, settings. In other words,
even if ¢ is mistakenly taken as having satisfied optimality earlier in the loop, 7 will be detected
as violating optimality when it is analysed. Only when (8) holds it is possible for all indices to
satisfy the optimality checks. Furthermore, when (8) holds and the loop over all indices has been
completed, the true values of by, and by, as defined in (5) would have been computed since all

indices have been encountered.

6 Computational Comparison.

In this section we compare the performance of our modifications against the original SMO algorithm.
We implemented all these methods in Fortran and ran them using f77 on a 200 MHz Pentium
machine. The value, 7 = 0.001 was used for all experiments. The following standard problems

were used in our testing: Wisconsin Breast Cancer data[l,17]; Two Spirals data[l14]; Checkers

10

Data Set o? n m
Wisconsin Breast Cancer | 4.0 9 683
Two Spirals 0.5 2 195
Checkers 0.5 2 465
Adult-1 10.0 | 123 | 1605

Adult-4 10.0 | 123 | 4781

Adult-7 10.0 | 123 | 16100

Web-1 10.0 | 300 | 2477

Web-4 10.0 | 300 | 7366

Web-7 10.0 | 300 | 24692

Table 1: Data Set Properties.

data[5]; UCI Adult data[10]; and Web page classification data[10,4]. Except for Checkers data, for
which we created a random set of points on a 4 x 4 checkers grid (see [6]), all other data sets were
downloaded from the sites mentioned in the above references and were used in full for training. i.e.,
no division into training/validation/test sets was made. In the case of Adult data set, the inputs
are represented in a special binary format, as used by Platt in his testing of SMO. To study scaling
properties as training data grows, Platt did staged experiments on the Adult and Web data. We

have used only the data from the first, fourth and seventh stages. The gaussian kernel,
K(s, ;) = exp(—0.5]z; — ;% /0?)

was used in all experiments. The o? values employed, together with n, the dimension of the input,
and m, the number of training points, are given in Table 1. The ¢? values given in the table were
chosen as follows. For the Adult and Web data the o2 values are the same as those used by Platt
in his experiments on SMO; for other data, we chose o2 suitably to get good generalization.

When a particular method is used for SVM design, the value of C is usually unknown, and it has
to be chosen by trying a number of values and using a validation set. Therefore, good performance
of a method over a range of C' values is important. Therefore for each problem we have tested the
algorithms over an appropriate range of C' values.

The cost of updating the cache for F; is the dominant part of the computational cost. Hence

11

the total number of kernel evaluations is a very good indicator of the computing cost. Since
such a measure is pretty much independent of the computing environment used, it is easy for
others developing new algorithms to compare their methods against the ones studied in this paper,
without actually running these methods again. In Tables 2-10 we have given the total number of
kernel evaluations for the various problems tried. To point out the effect of the choice of random
seed on the cost associated with the original SMO algorithm, we have reported costs for two random
seeds. (We haven’t done this for the Web data since, for that data, change of random seed had no
effect on the computational cost.) Our SMO modifications do not require any random seed.

It is very clear that the modifications outperform the original SMO algorithm. In many situa-
tions the improvement in efficiency is remarkable. Between the two modifications, the second one

fares better overall.

7 Conclusion.

In this paper we have pointed out an important source of inefficiency in Platt’s SMO algorithm
that is caused by the operation with a single threshold value. We have suggested two modifications
of the SMO algorithm that overcome the problem by efficiently maintaining and updating two
threshold parameters. Our computational experiments show that these modifications speed up the
SMO algorithm considerably in many situations. Platt has already established the SMO algorithm
to be one of the fastest algorithms for SVM design. The modified versions of SMO presented in this
paper enhance the value of the SMO algorithm even further. The ideas mentioned in this paper
for SVM classification can also be extended to the SMO regression algorithm[13]. We will report

the results of that extension in another paper[12].

12

C SMO SMO SMO SMO
Random Seed 1 | Random Seed 2 | Modification 1 | Modification 2

0.02 47.855 36.822 1.193 3.500
0.04 2.936 2.671 2.005 1.725
0.06 2.114 2.648 2.035 1.950
0.10 1.627 1.824 1.860 1.680
0.20 1.647 2.045 1.775 1.404
0.40 1.720 1.372 1.362 1.255
0.50 1.613 1.618 1.265 1.183
0.70 1.653 1.377 1.339 1.065
1.00 1.531 1.560 1.474 1.210
2.00 1.516 1.686 1.331 1.019
3.00 1.625 1.690 1.314 0.990

Table 2: Wisconsin Breast Cancer data: Number of Kernel evaluations x 106

References

[1]

R. Bennett and O.L. Mangasarian, Robust linear programming discrimination of two linearly

inseparable sets, Optimization Methods and Software, Vol.1, 1992, pp.23-34.

C.J.C. Burges, A tutorial on support vector machines for pattern recognition, Data Mining

and Knowledge Discovery, Vol.2, Number 2, 1998.

T.T. Friess, Support vector networks: The kernel adatron with bias and soft-margin, Tech.
Report, The University of Sheffield, Dept. of Automatic Control and Systems Engineering,
Sheffield, England, 1998.

T. Joachims, Making large-scale support vector machine learning practical, in B. Scholkopf,
C. Burges, A. Smola. Advances in Kernel Methods: Support Vector Machines, MIT Press,
Cambridge, MA, December 1998.

L. Kaufman, Solving the quadratic programming problem arising in support vector classifi-

cation, in B. Scholkopf, C. Burges, A. Smola. Advances in Kernel Methods: Support Vector

13

C SMO SMO SMO SMO
Random Seed 1 | Random Seed 2 | Modification 1 | Modification 2

0.02 0.093 0.100 0.096 0.096
0.04 0.110 0.134 0.097 0.097
0.06 0.135 0.469 0.097 0.097
0.10 0.116 0.117 0.097 0.097
0.20 0.099 0.148 0.097 0.097
0.40 0.255 0.179 0.172 0.171
0.50 0.198 0.241 0.284 0.323
0.70 0.457 0.445 0.240 0.210
1.00 0.559 0.548 0.571 0.443
2.00 3.343 6.055 2.900 1.520
3.00 4.128 2911 2.905 1.710
10.0 3.343 4.413 3.043 1.690

Table 3: Two Spirals data: Number of Kernel evaluations x 1076

C SMO SMO SMO SMO
Random Seed 1 | Random Seed 2 | Modification 1 | Modification 2

1.0 1.180 1.012 0.810 0.670
5.0 1.320 1.165 1.275 1.044
10.0 1.387 1.624 1.453 1.113
50.0 3.241 2.584 2.353 1.739
102 6.027 5.038 4.578 2.119

5 x 102 20.187 9.970 7.556 4.607
103 17.518 16.943 7.321 8.569

5 x 103 62.729 96.136 49.270 38.660
10* 60.202 68.392 52.000 17.274

5 x 10* 34.093 44.377 28.380 26.450

Table 4: Checkers data: Number of Kernel evaluations x 10

14

C SMO SMO SMO SMO
Random Seed 1 | Random Seed 2 | Modification 1 | Modification 2

0.10 1.129 1.077 0.324 0.325
0.20 0.917 1.042 0.569 0.570
0.40 0.752 0.751 0.546 0.545
0.50 0.846 0.734 0.543 0.539
0.70 0.834 0.944 0.545 0.541
1.00 0.723 0.728 0.547 0.647
2.00 0.891 0.868 0.630 0.610
3.00 0.888 0.863 0.727 0.696
5.00 1.053 1.082 0.845 0.749
10.0 2.041 2.089 1.428 1.198
20.0 3.921 3.904 2.463 1.946
50.0 7.915 8.446 4.740 3.402
100.0 13.315 12.358 6.543 4.502
200.0 16.656 19.692 9.382 5.588
500.0 24.019 25.676 14.715 6.942

Table 5: Adult 1 data: Number of Kernel evaluations x 107

15

C SMO SMO SMO SMO
Random Seed 1 | Random Seed 2 | Modification 1 | Modification 2
0.10 9.812 9.290 6.856 5.819
0.20 10.074 8.145 4.506 4.499
0.40 7.739 7.745 4.336 4.330
0.50 9.472 7.657 5.233 4.341
0.70 6.706 6.700 4.388 4.352
1.00 6.715 7.588 4.498 4.467
2.00 7.163 7.200 5.034 4.923
3.00 7.901 6.939 5.638 5.446
5.00 8.980 9.631 7.204 5.880
10.0 16.431 15.086 11.711 9.310
20.0 33.564 33.288 20.864 15.386
50.0 77.886 71.813 42.554 29.409
100.0 128.383 126.491 66.100 48.257
200.0 207.332 217.001 112.869 78.402
500.0 384.589 393.042 216.034 122.202
Table 6: Adult 4 data: Number of Kernel evaluations x 107
C SMO SMO SMO SMO
Random Seed 1 | Random Seed 2 | Modification 1 | Modification 2
0.10 193.680 206.289 31.590 31.590
0.40 90.758 90.648 45.742 45.720
1.00 90.091 71.677 47.993 47.490
5.00 103.471 103.198 77.732 70.700
20.0 370.405 380.250 224.689 153.932

Table 7: Adult 7 data: Number of Kernel evaluations x 107

16

C SMO SMO SMO
Modification 1 | Modification 2

0.10 | 0.679 0.633 0.632
0.20 | 1.197 0.755 0.727
0.40 | 1.215 0.893 0.971
0.50 | 1.013 0.912 0.918
0.70 | 0.963 1.070 1.032
1.00 | 1.206 1.063 0.988
2.00 | 1.365 1.260 1.142
3.00 | 1.449 1.308 1.270
5.00 | 1.252 1.178 1.242
10.0 | 1.421 1.397 1.348
20.0 | 1.570 1.364 1.221
50.0 | 1.621 1.373 1.363
100.0 | 1.666 1.301 1.250
200.0 | 1.336 1.366 1.257
500.0 | 1.378 1.442 1.420

Table 8: Web 1 data: Number of Kernel evaluations x 107

17

C SMO SMO SMO
Modification 1 | Modification 2
0.10 | 6.714 4.126 3.578
0.20 | 7.686 3.937 4.010
0.40 | 9.155 4.333 4.972
0.50 | 8.808 5.102 5.185
0.70 | 9.146 6.199 5.059
1.00 | 8.154 6.156 6.061
2.00 | 8.494 7.436 6.594
3.00 | 9.887 8.331 9.092
5.00 | 10.826 8.749 9.464
10.0 | 9.685 11.193 12.402
20.0 | 12.162 9.795 10.265
50.0 | 10.733 10.973 10.305
100.0 | 12.155 11.314 11.821
200.0 | 12.169 10.177 10.907
500.0 | 12.792 11.121 10.661

Table 9: Web 4 data: Number of Kernel evaluations x 107

18

C SMO SMO SMO
Modification 1 | Modification 2
0.10 | 134.575 33.218 38.725
0.20 | 143.039 40.536 46.877
0.40 | 132.594 48.952 40.187
0.50 | 115.698 50.801 45.382
0.70 | 106.148 42.707 53.282
1.00 | 120.296 49.265 48.310
2.00 | 146.941 56.402 64.235
3.00 | 112.226 58.735 69.329
5.00 | 115.890 82.549 69.308
10.0 | 113.551 85.744 86.436
20.0 | 103.516 95.809 93.830
50.0 | 129.473 93.215 89.486
100.0 | 136.820 91.090 110.006
200.0 | 148.265 93.362 94.349
500.0 | 125.315 94.553 105.505

Table 10: Web 7 data: Number of Kernel evaluations x 107

19

[12]

Machines, MIT Press, Cambridge, MA, December 1998.

S.S. Keerthi, S.K. Shevade, C. Bhattacharyya and K.R.K. Murthy, A fast iterative nearest
point algorithm for support vector machine classifier design, Tech. Report TR-ISL-99-03, In-
telligent Systems Lab, Dept. of Computer Science and Automation, Indian Institute of Science,

Bangalore, India, March 1999. See: hitp://quppy.mpe.nus.edu.sg/ mpessk

O.L. Mangasarian and D.R. Musicant, Successive overrelaxation for support vector machines,

Tech. Report, Computer Sciences Dept., University of Wisconsin, Madison, WI, USA, 1998.

E. Osuna, R. Freund and F. Girosi, An improved training algorithm for support vector ma-
chines, in J. Principe, L. Giles, N. Morgan and E. Wilson, editors, Neural Networks for Signal
Processing VII — Proceedings of the 1997 IEEE Workshop, pp.276-285, New York, 1997, IEEE.

J.C. Platt, Fast training of support vector machines using sequential minimal optimization, in
B. Scholkopf, C. Burges, A. Smola. Advances in Kernel Methods: Support Vector Machines,
MIT Press, Cambridge, MA, December 1998.

J.C. Platt, Adult and Web Datasets. hitp://www.research.microsoft.com/ jplatt

J.C. Platt, Using sparseness and analytic QP to speed training of support vector machines,
in Advances in Neural Information Processing Systems 11, M.S. Kearns, S.A. Solla and D.A.
Cohn, eds., MIT Press, 1999.

S.K. Shevade, S.S. Keerthi, C. Bhattacharyya and K.R.K. Murthy, Improved versions of the
SMO algorithm for SVM regression, Tech. Rept., Dept. of Mech. and Prod. Engrg., National

University of Singapore, Singapore, Aug 1999, Under Preparation.

A.J. Smola and B. Scholkopf, A tutorial on support vector regression, NeuroCOLT Technical
Report TR-1998-030, Royal Holloway College, London, UK, 1998.

Two Spirals Data.

ftp://ftp.boltz.cs.cmu.edu/pub/neural-bench/bench /two-spirals-vl.0.tar.gz

V. Vapnik, Estimation of Dependences Based on Empirical Data. Springer-Verlag, Berlin,
1982.

20

[16] V. Vapnik, The Nature of Statistical Learning Theory. Springer-Verlag, New York, 1995.

[17] Wisconsin Breast Cancer Data.

ftp://128.195.1.46/pub/machine-learning-databases/breast-cancer-wisconsin/

Appendix. Pseudo-Codes for Modified SMO Algorithms.

The pseudo-codes for the improved SMO algorithms are presented below. Here, statements starting

with “%” denote comments.

target = desired output vector
point = training point matrix
fcache = cache vector for Fi values
% Note: Our definition of Fi is different from the Ei in Platt’s SMO

% algorithm. Our Fi does not subtract any threshold.

procedure takeStep(il,i2)
% Much of this procedure is same as that in Platt’s SMO pseudo-code.
if (i1 == i2) return O

alphl = Lagrange multiplier for il

yl = target[ill
F1 = fcache[il]
s = ylxy2

Compute L, H

if (L == H)

return O
k11 = kernel(point[il],point[il])
k12 = kernel(point[il],point[i2])
k22 = kernel(point[i2],point[i2])
eta = 2xk12-k11-k22

if (eta < 0)

21

a2 = alph2 - y2*(F1-F2)/eta
if (a2 < L) a2 =L

else if (a2 > H) a2 = H

b

else

{
Lobj = objective function at a2=L
Hobj = objective function at a2=H

if (Lobj > Hobj+eps)
a2 = L

else if (Lobj < Hobj-eps)

a2 = H
else
a2 = alph2

3
if (la2-alph2| < eps*(a2+alph2+eps))
return O

al = alphl+s*(alph2-a2)

Update weight vector to reflect change in al & a2, if linear SVM

Update fcachel[i] for i in I_O using new Lagrange multipliers

Store al and a2 in the alpha array
% The update below is simply achieved by keeping and updating information
% about alpha_i being at 0, C or in between them. Using this together with
% target[i] gives information as to which index set i belongs.

Update I_0, I_1, I_2, I_3 and I_4

% Compute updated F values for il and i2...

fcache[il]l = F1 + ylx(al-alphl)#*kll + y2*(a2-alph2)*k12

fcache[i2]

F2 + yl*x(al-alphl)*k12 + y2x*(a2-alph2)*k22

Compute (i_low, b_low) and (i_up, b_up) by applying equations (1la) and

22

(11b), using only il, i2 and indices in I_0; see item 3 of section 5.
return 1

endprocedure

procedure examineExample(i2)
y2 = target[i2]
alph2 = Lagrange multiplier for i2
if (i2 is in I_0)
{
F2 = fcache[i2]

else

compute F2 = F_i2 and set fcache[i2] = F2
% Update (b_low, i_low) or (b_up,i_up) using (F2,i2)...
if ((i2 is in I_1 or I_2) && (F2 < b_up))
b_up = F2, i_up = i2
else if ((i2 is in I_3 or I_4) && (F2 > b_low))
b_low = F2, i_low = i2
b
% Check optimality using current b_low and b_up and, if
% violated, find an index il to do joint optimization with i2...
optimality =1
if (i2 is in I_0, I_1 or I_2)
{
if (b_low-F2 > 2x%tol)
optimality = 0, i1 = i_low
}
if (i2 is in I_0, I_3 or I_4)
{

23

if (F2-b_up > 2%tol)
optimality = 0, il = i_up

}
if (optimality == 1)

return 0O

% For i2 in I_O choose the better il...

if (i2 is in I_0)
{

if (b_low-F2 > F2-b_up)

i1

i_low

else

}

if takeStep(il,i2)
return 1

else
return 0O

endprocedure

main routine for Modification 1:
initialize alpha array to all zero
initialize b_up = -1, i_up to any one index of class 1
initialize b_low = 1, i_low to any one index of class 2
set fcache[i_low] = 1 and fcachel[i_up] = -1

numChanged = 0;

examineAll 1;
while (numChanged > O | examineAll)
{
numChanged = 0;

if (examineAll)

24

loop I over all training examples

numChanged += examineExample(I)

else

loop I over I_0
numChanged += examineExample(I)
% It is easy to check if optimality on I_0 is attained...
if (bup > blow - 2*tol) at any I
exit the loop after setting numChanged = 0O
}
if (examineAll == 1)
examineAll = 0
else if (numChanged == 0)

examineAll = 1

main routine for Modification 2:
initialize alpha array to all zero
initialize b_up = -1, i_up to any one index of class 1
initialize b_low = 1, i_low to any one index of class 2
set fcache[i_low] = 1 and fcachel[i_up] = -1

numChanged = 0;

examineAll 1;

while (numChanged > O | examineAll)

{
numChanged = 0;

if (examineAll)

25

h
h
b
h
h
b

loop I over all training examples
numChanged += examineExample(I)
}
else
The following loop is the only difference between the two SMO
modifications. Whereas, in modification 1, the inner loop selects
12 from I_O sequentially, here i2 is always set to the current
i_low and il is set to the current i_up; clearly, this corresponds
to choosing the worst violating pair using members of I_O and some
other indices.
{
inner_loop_success = 1;
do until ((bup > blow - 2%tol) | inner_loop_success = 0)
{
i2

i_low

y2 = target(i2)

alph2 = Lagrange multiplier for i2

F2 = fcache[i2]
il = i_up
inner_loop_success = takeStep(i_up,i_low)
numChanged += inner_loop_success
}
numChanged = 0
}
if (examineAll == 1)
examineAll = O

else if (numChanged == 0)

examineAll = 1

26

27

