
Imrovements to Platt's SMO Algorithm for SVMClassi�er Design1

S.S. Keerthi S.K. Shevade C. Bhatta
haryya & K.R.K. Murthyssk�guppy.mpe.nus.edu.sg shirish�
sa.iis
.ernet.in
b
hiru�
sa.iis
.ernet.in murthy�
sa.iis
.ernet.inTe
hni
al Report CD-99-14

Control DivisionDept. of Me
hani
al and Produ
tion EngineeringNational University of SingaporeSingapore-119260Ph: (65)-874-4684
1A revised version of this report is under preparation for submission to a journal. We wel
ome any
omments andsuggestions for improving this report.

Abstra
tThis paper points out an important sour
e of
onfusion and ineÆ
ien
y in Platt's SequentialMinimal Optimization (SMO) algorithm that is
aused by the use of a single threshold value.Using
lues from the KKT
onditions for the dual problem, two threshold parameters are em-ployed to derive modi�
ations of SMO. These modi�ed algorithms perform signi�
antly fasterthan the original SMO on all ben
hmark datasets tried.1 Introdu
tionIn the past few years, there has been a lot of ex
itement and interest in Support Ve
tor Ma
hines[16,2℄ be
ause they have yielded ex
ellent generalization performan
e on a wide range of problems.Re
ently, fast iterative algorithms that are also easy to implement have been suggested[9,4,7,3,6℄.Platt's Sequential Minimization Algorithm (SMO)[9,11℄ is an important example. A remarkablefeature of SMO is that it is also extremely easy to implement. Comparative testing against otheralgorithms, done by Platt, have shown that SMO is often mu
h faster and has better s
alingproperties.In this paper we enhan
e the value of SMO even further. In parti
ular, we point out animportant sour
e of
onfusion and ineÆ
ien
y
aused by the way SMO maintains and updates asingle threshold value. Getting
lues from optimality
riteria asso
iated with the KKT
onditionsfor the dual, we suggest the use of two threshold parameters and devise two modi�ed versions ofSMO that remove the
onfusion asso
iated with SMO and are mu
h more eÆ
ient than the originalSMO. Computational
omparison on a number of ben
hmark datasets shows that the modi�
ationsperform signi�
antly faster than the original SMO in most situations. The ideas mentioned in thispaper
an also be applied to the SMO regression algorithm[13℄. We will report the results of thatextension in another paper[12℄.The paper is organized as follows. In se
tion 2 we brie
y dis
uss the SVM problem formulation,the dual problem and the asso
iated KKT optimality
onditions. We also point out how these
onditions lead to proper
riteria for terminating algorithms for designing SVM
lassi�ers. Se
tion3 gives a short summary of Platt's SMO algorithm. In se
tion 4 we point out the problem asso
iatedwith the way SMO uses a single threshold value, and des
ribe the modi�ed algorithms in se
tion5. Computational
omparison is done in se
tion 6. The appendix gives the pseudo-
odes for our1

SMO modi�
ations. These pseudo-
odes are very similar to those for the SMO given by Platt in[9℄. They are short, and, it is very easy to develop a working
ode for SVM design using them.2 The SVM Problem and Optimality Conditions.The basi
 problem addressed in this paper is the two
ategory
lassi�
ation problem. The tutorialby Burges[2℄ gives a good overview of the solution of this problem using SVMs. Throughout thepaper we will use x to denote the input ve
tor of the support ve
tor ma
hine and z to denote thefeature spa
e ve
tor whi
h is related to x by a transformation, z = �(x). As in all SVM designs,we do not assume � to be known; all
omputations will be done using only the kernel fun
tion,k(x; x̂) = �(x) � �(x̂), where \�" denotes inner produ
t in the z spa
e. Let f(xi; yi)g denote thetraining set, where xi is the i-th input pattern and yi is the
orresponding target value; yi = 1means xi is in
lass 1 and yi = �1 means xi is in
lass 2. Let zi = �(xi). The optimization problemsolved by the support ve
tor ma
hine is:min 12kwk2 + CXi �i (1a)subje
t to : yi(w � zi � b) � 1� �i 8 i; �i � 0 8 i (1b)This problem is referred to as the primal problem. The Lagrangian for this problem is:L = 12kwk2 + CXi �i +Xi �i[1� �i � yi(w � zi � b)℄�Xi �i�iThe KKT optimality
onditions are given by:rwL = w �Xi �iyizi = 0; �L�b =Xi �iyi = 0; �L��i = C � �i � �i = 0 8i;�i � 0; �i[1� �i � yi(w � zi � b)℄ = 0; �i � 0; �i�i = 0 8i:We will refer to the �i's as Lagrange multipliers. Let us de�new(�) =Xi �iyiziUsing Wolfe duality theory[16,2℄ it
an be shown that the �i's are obtained by solving the followingDual problem: maxW (�) =Xi �i � 12w(�) � w(�) (2a)2

subje
t to 0 � �i � C; Xi �iyi = 0 (2b)On
e the �i's are obtained, the other primal variables, w, b, � and �
an be easily determinedby using the KKT
onditions mentioned earlier. It is possible that the solution is non-unique; forinstan
e, when all �is take the boundary values of 0 and C, it is possible that b is not unique.The numeri
al approa
h in SVM design is to solve the dual (instead of the primal) be
ause itis a �nite-dimensional optimization problem. (Note that w(�) � w(�) = PiPj yiyj�i�jk(xi; xj).)To derive proper stopping
onditions for algorithms whi
h solve the dual, it is important to writedown the optimality
onditions for the dual. The Lagrangian for the dual is:�L = 12w(�) � w(�)�Xi �i �Xi Æi�i +Xi �i(�i � C)� �Xi �iyiDe�ne Fi = w(�) � zi � yi =Xj �jyjk(xi; xj)� yiThe KKT
onditions for the dual problem are:� �L��i = (Fi � �)yi � Æi + �i = 0; Æi � 0; Æi�i = 0; �i � 0; �i(�i � C) = 0 8 iThese
onditions
an be simpli�ed by
onsidering three
ases.Case 1. �i = 0 Æi � 0; �i = 0) (Fi � �)yi � 0 (3a)Case 2. 0 < �i < C Æi = 0; �i = 0) (Fi � �)yi = 0 (3b)Case 3. �i = C Æi = 0; �i � 0) (Fi � �)yi � 0 (3
)De�ne the following index sets at a given �: I0 = fi : 0 < �i < Cg; I1 = fi : yi = 1; �i = 0g;I2 = fi : yi = �1; �i = Cg; I3 = fi : yi = 1; �i = Cg; and, I4 = fi : yi = �1; �i = 0g. Note thatthese index sets depend on �. The ne
essary
onditions in (3a)-(3
)
an be rewritten as� � Fi 8 i 2 I0 [I1 [I2 ; � � Fi 8 i 2 I0 [I3 [I4 (4)De�ne: bup = minfFi : i 2 I0 [I1 [I2g and blow = maxfFi : i 2 I0 [I3 [I4g (5)3

Then optimality
onditions will hold at some � i�blow � bup (6)It is easy to see the
lose relationship between the threshold parameter b in the primal problemand the multiplier, �. In parti
ular, at optimality, � and b are identi
al. Therefore, in the rest ofthe paper � and b will denote one and the same quantity.We will say that an index pair (i; j) de�nes a violation at � if one of the following sets of
onditions holds: i 2 I0 [I3 [I4 ; j 2 I0 [I1 [I2 and Fi > Fj (7a)i 2 I0 [I1 [I2 ; j 2 I0 [I3 [I4 and Fi < Fj (7b)Note that optimality
onditions will hold at � i� there does not exist any index pair (i; j) thatde�nes a violation.Sin
e, in numeri
al solution, it is usually not possible to a
hieve optimality exa
tly, there is aneed to de�ne approximate optimality
onditions. The
ondition (6)
an be repla
ed byblow � bup + 2� (8)where � is a positive toleran
e parameter. (In the pseudo-
odes given in [9℄ and the appendix ofthis paper, this parameter is referred to as tol.) Correspondingly, the de�nition of violation
anbe altered by repla
ing (7a) and (7b) by:i 2 I0 [I3 [I4 ; j 2 I0 [I1 [I2 and Fi > Fj + 2� (9a)i 2 I0 [I1 [I2 ; j 2 I0 [I3 [I4 and Fi < Fj � 2� (9b)Hereafter in the paper, when optimality is mentioned it will mean approximate optimality.Sin
e �
an be pla
ed halfway between blow and bup, approximate optimality
onditions willhold i� there exists a � su
h that (3a)-(3
) are satis�ed with a � -margin, i.e.,(Fi � �)yi � �� if �i = 0 (10a)j(Fi � �)j � � if 0 < �i < C (10b)(Fi � �)yi � � if �i = C (10
)4

(10a)-(10
) are the approximate optimality
onditions employed by Platt[9℄, Joa
hims[4℄ and others.In [6℄ we have argued the soundness of using the above approximate
onditions as a stopping
riterion for dual algorithms.3 Platt's SMO Algorithm.A number of algorithms have been suggested for solving the dual problem. Traditional quadrati
programming algorithms su
h as the a
tive set method[5℄ and interior point algorithms[13℄ arenot suitable for large size problems be
ause of the following reasons. First, they require that thekernel matrix k(xi; xj) be
omputed and stored in memory. This requires extremely large memory.Se
ond, these methods involve expensive matrix operations su
h as the Cholesky de
omposition ofa large submatrix of the kernel matrix. Third, for pra
titioners who would like to develop theirown implementation of an SVM
lassi�er,
oding these algorithms is very diÆ
ult.Several attempts have been made to develop methods that over
ome some or all of these prob-lems. Vapnik[15℄ made the observation that if the number of support ve
tors is small and theyare known beforehand, then one
ould dire
tly solve the redu
ed problem involving only the sup-port ve
tors and thereby deal with signi�
antly larger datasets. Sin
e the support ve
tors are notknown, a beginning set of ve
tors is
hosen and
hunked into memory and the resulting problem issolved. Then the remaining ve
tors are tested for optimality and those that violate are in
luded.The pro
ess is repeated until a solution is obtained. This is referred to as the
hunking algorithm.If the number of support ve
tors itself is large then the
hunking algorithm is also unsuitable.Osuna et.al.[8℄ suggested the use of only a subset of the ve
tors as a working subset and optimizeon the
orresponding �i's while freezing the others. Though the arguments given by Osuna et.al.about the
onvergen
e of the algorithm are in
orre
t, it is expe
ted that the algorithm will
onvergeasymptoti
ally as the number of steps goes to in�nity. Joa
hims[4℄ has developed an eÆ
ientalgorithm for SVM by building upon the basi
 idea given in [8℄.Re
ently Platt suggested an algorithm[9℄ { Sequential Minimal Optimization (SMO) { that putsthe subset sele
tion in Osuna et.al's algorithm to the extreme by iteratively sele
ting subsets only ofsize 2. Note that, be
ause of the presen
e of the equality
onstraint (see (2b)), at least two variablesneed to be
hosen for optimization so as to take a step. Platt's
omputational experiments[9,11℄5

have shown SMO to be very mu
h faster than the
hunking algorithm; it also s
ales mu
h betteras problem size grows. The SMO algorithm also fares better than Joa
him's algorithm[4℄.Let us give a brief des
ription of the SMO algorithm. Be
ause the working set is only ofsize 2 and the equality
onstraint
an be used to eliminate one of the two Lagrange multipliers,the optimization problem at ea
h step is a quadrati
 minimization in just one variable. It isstraightforward to write down an analyti
 solution for it. Complete details are derived in [9℄. Thepro
edure, takeStep (whi
h is a part of the pseudo
ode given there) gives a
lear des
ription of theimplementation. There is no need to re
all all details here. We only make one important
ommenton the role of the threshold parameter, �. As in [9℄ de�ne the output error on the i-th pattern asEi = Fi � �Consistent with the pseudo
ode of [9℄ let us
all the indi
es of the two multipliers
hosen foroptimization in one step as i2 and i1. A look at the details in [9℄ shows that to take a step byvarying �i1 and �i2 , we only need to know Ei1 � Ei2 = Fi1 � Fi2 . Therefore a knowledge of thevalue of � is not needed to take a step.The method followed to
hoose i1 and i2 at ea
h step is
ru
ial for eÆ
ient solution of theproblem. Based on a number of experiments Platt
ame up with a good set of heuristi
s. Heemploys a two loop approa
h: the outer loop
hooses i2; and, for a
hosen i2, the inner loop
hooses i1. The outer loop iterates over all patterns violating the optimality
onditions, �rst onlyover those with Lagrange multipliers neither on the upper nor lower boundary, and on
e all ofthem are satis�ed, over all patterns violating the optimality
onditions to ensure that the problemhas indeed been solved. Clearly, the algorithm spends a large fra
tion of its time adjusting themultipliers whi
h take non-boundary values and only a small amount of time with the multipliersthat take boundary values. Appropriately, therefore, Platt maintains and updates a
a
he for Eivalues for indi
es i
orresponding to non-boundary multipliers. The remaining Ei are
omputed asand when needed.Let us now see how the SMO algorithm
hooses i1. The aim is to make a large in
rease in theobje
tive fun
tion. Sin
e it is expensive to try out all possible
hoi
es of i1 and
hoose the one thatgives the best in
rease in obje
tive fun
tion, the index i1 is
hosen to maximize jEi2 �Ei1 j. (If wede�ne �(t) = W (�(t)) where t is a real parameter that denotes the
hange in the values of yi1�i1and �yi2�i2 , and �(t) is the
orresponding Lagrangian multiplier ve
tor, then j�0(0)j = jEi1�Ei2 j.)6

Sin
e Ei is available in
a
he for non-boundary multiplier indi
es, only su
h indi
es are initially usedin the above
hoi
e of i1. If su
h a
hoi
e of i1 does not yield suÆ
ient progress, then the followingsteps are taken. Starting from a randomly
hosen index, all indi
es
orresponding to non-boundmultipliers are tried as
hoi
es for i1, one by one. If still suÆ
ient progress is not possible, allindi
es are tried as
hoi
es for i1, one by one, again starting from a randomly
hosen index. Thusthe
hoi
e of random seed a�e
ts the running time of SMO; see, for example, the
omputational
osts mentioned in se
tion 5.Although a value of � is not needed to take a step, it is needed if (10a)-(10
) are employed for
he
king optimality. In the SMO algorithm � is updated after ea
h step. If, after a step involving(i1; i2), one of �i1 , �i2 (or both) takes a non-boundary value then (3b) is exploited to update thevalue of �. In the rare
ase that this does not happen, there exists a whole interval, say, [�low; �up℄,of admissible thresholds for �i1 and �i2 . In this situation SMO simply
hooses: � = (�low+�up)=2.In the next se
tion we will see the problems
aused by su
h a
hoi
e.4 Problems with SMO Algorithm.SMO is a
arefully organized algorithm whi
h has ex
ellent
omputational eÆ
ien
y. However,be
ause of its way of
omputing and using a single threshold value it
an get into a
onfused endstate and
an also be
ome ineÆ
ient. Let us illustrate the �rst issue using a numeri
al example.Example 1. Consider the following example where there are 3 patterns:y1 = �1; y2 = y3 = +1; C = 14 ; Kernel Matrix = 266664 1 0 00 1 20 2 6 377775Suppose we start from �1 = �2 = �3 = 0 (the usual point where SMO starts). Cal
ulating Fiwe get F1 = 1, F2 = F3 = �1. All three indi
es violate the optimality
onditions. (Note thatblow = 1 and bup = �1; SMO uses � = 0 to
he
k optimality
onditions.) Suppose SMO
hoosesindi
es 1 and 2 for optimization, keeping �3 �xed at 0. It is easy to
he
k that this leads to thepoint, �1 = �2 = C, �3 = 0. At this new point we have F1 = 3=4, F2 = �3=4, F3 = �1=2. Notethat blow = �3=4 and bup = �1=2 and hen
e optimality
onditions are satis�ed. SMO
hooses� = (F1 + F2)=2 = 0. If this value of � is used to
he
k optimality, the third training pattern7

shows a violation of the optimality
riterion employed by Platt (i.e., (10)), but a
tually there isno violation! Note that any �
hosen from the interval, [�3=4; �1=2℄ would have ensured theveri�
ation of (10).This example
learly sums up our �rst
on
ern. Be
ause SMO
onstrains itself unne
essarilyto a parti
ular single
hoi
e of the threshold, �, it gets into trouble, espe
ially at termination.The issue raised here appears to be somewhat pathologi
al sin
e the presen
e of even a singleindex i with 0 < �i < C for
es � to be unique and so there is really no serious problem. (Notethat unless C takes
ertain extreme values, there is little possibility of not having an index i with0 < �i < C.) But we would like to point out that there is still a pra
ti
al problem of ineÆ
ien
y.At any instant, the SMO algorithm �xes � based on the
urrent two indi
es whi
h are beingoptimized. However, while
he
king whether the remaining examples violate optimality or not, itis quite possible that a di�erent, shifted
hoi
e of � may do a better job. So, in the SMO algorithmit is quite possible that, even though � has rea
hed a value where optimality is satis�ed (i.e., (8)),SMO hasn't dete
ted this be
ause it has not identi�ed the
orre
t
hoi
e of �. It is also quitepossible that, a parti
ular index may appear to violate the optimality
onditions be
ause (10) isemployed using an \in
orre
t" value of � although this index may not be able to pair with anotherto de�ne a violation. In su
h a situation the SMO algorithm does an expensive and wasteful sear
hlooking for a se
ond index so as to take a step. We believe that this is a major sour
e of ineÆ
ien
yin the SMO algorithm.5 Modi�
ations of the SMO Algorithm.In this se
tion we suggest two modi�ed versions of the SMO algorithm, ea
h of whi
h over
omesthe problems mentioned in the last se
tion. As we will see in the
omputational evaluation ofse
tion 6, these modi�
ations are almost always better than the original SMO algorithm and, inmost situations they give quite a remarkable improvement in eÆ
ien
y when tested on severalben
hmark problems.In short, the modi�
ations avoid the use of a single threshold value � and the use of (10) for
he
king optimality. Instead, two threshold parameters, bup and blow are maintained and (8) (or(9)) is employed for
he
king optimality. The two modi�
ations are adequately des
ribed by the8

pseudo-
odes given in the appendix. We only give some additional pointers that will help to givean easy understanding of the pseudo-
odes. We assume that the reader is familiar with [9℄ and thepseudo-
odes given there.1. Suppose, at any instant, Fi is available for all i. Let i low and i up be indi
es su
h thatFi low = blow = maxfFi : i 2 I0 [I3 [I4g (11a)Fi up = bup = minfFi : i 2 I0 [I1 [I2g (11b)Then
he
king a parti
ular i for optimality is easy. For example, suppose i 2 I1 [I2. We onlyhave to
he
k if Fi < Fi low � 2� . If this
ondition holds then there is a violation, and, in that
aseSMO's takeStep pro
edure
an be applied to the index pair, (i; i low). Similar steps
an be givenfor indi
es in the other sets. Thus, in our approa
h, the
he
king of optimality of i2 and the
hoi
eof the se
ond index, i1 go hand in hand, unlike the original SMO algorithm. As we will see below,we
ompute and use (i low; blow) and (i up; bup) via an eÆ
ient updating pro
ess.2. To be eÆ
ient, we would, like in the SMO algorithm, spend mu
h of the e�ort altering �i,i 2 I0;
a
he for Fi, i 2 I0 are maintained and updated to do this eÆ
iently. And, when optimalityholds for all i 2 I0, only then examine all indi
es for optimality.3. Some extra steps are added to the takeStep pro
edure. After a su

essful step using a pairof indi
es, (i2; i1), let ~I = I0 [fi1; i2g. We
ompute, partially, (i low; blow) and (i up; bup) using ~Ionly (i.e., use only i 2 ~I in (11)). Note that these extra steps are inexpensive be
ause
a
he forfFi, i 2 I0g is available and updates of Fi1 , Fi2 are easily done. A
areful look shows that, sin
ei2 and i1 have been just involved in a su

essful step, ea
h of the two sets, ~I \ (I0 [I1 [I2) and~I \ (I0 [I3 [I4), is non-empty; hen
e the partially
omputed (i low; blow) and (i up; bup) will notbe null elements. Sin
e i low and i up
ould take values from fi2; i1g and they are used as
hoi
esfor i1 in the subsequent step (see item 1 above), we keep the values of Fi1 and Fi2 also in
a
he.4. When working only with �i, i 2 I0, i.e., a loop with examineAll=0, one should note that,if (8) holds at some point then it implies that optimality holds as far as I0 is
on
erned. (This isbe
ause, as mentioned in item 3 above, the
hoi
e of blow and bup are in
uen
ed by all indi
es inI0.) This gives an easy way of exiting this loop.5. There are two ways of implementing the loop involving indi
es in I0 only (examineAll=0).Method 1. This is in line with what is done in SMO. Loop through all i2 2 I0. For ea
h i2,9

he
k optimality and, if violated,
hoose i1 appropriately. For example, if Fi2 < Fi low � 2� thenthere is a violation, and, in that
ase
hoose i1 = i low.Method 2. Always work with the worst violating pair, i.e.,
hoose i2 = i low and i1 = i up.Depending on whi
h one of these methods is used, we
all the resulting overall modi�
ation ofSMO as SMO-Modi�
ation 1 and SMO-Modi�
ation 2.6. When optimality on I0 holds, as already said we
ome ba
k to
he
k optimality on all indi
es(examineAll=1). Here we loop through all indi
es, one by one. Sin
e (blow; i low) and (bup; i up)have been partially
omputed using I0 only, we update these quantities as ea
h i is examined. For agiven i, Fi is
omputed �rst and optimality is
he
ked using the
urrent (blow; i low). For example,if i 2 I1 [I2 and Fi < blow � 2� , then there is a violation, in whi
h
ase we take a step using(i; i low). On the other hand, if there is no violation, then (i up; bup) are modi�ed using Fi, i.e, ifFi < bup then we do: i up := i and bup := Fi.7. Suppose we do as des
ribed above. What happens if there is no violation for any i in a loophaving examineAll=11? Can we
on
lude that optimality holds for all i? The answer is: YES. Thisis easy to see from the following argument. Suppose, by
ontradi
tion, there does exist one (i; j)pair su
h that they de�ne a violation, i.e., they satisfy (9). Let us say, i < j. Then j would nothave satis�ed the optimality
he
k in the above des
ribed implementation be
ause Fi would have,earlier than j is seen, a�e
ted either the
al
ulation of blow and/or bup settings. In other words,even if i is mistakenly taken as having satis�ed optimality earlier in the loop, j will be dete
tedas violating optimality when it is analysed. Only when (8) holds it is possible for all indi
es tosatisfy the optimality
he
ks. Furthermore, when (8) holds and the loop over all indi
es has been
ompleted, the true values of bup and blow, as de�ned in (5) would have been
omputed sin
e allindi
es have been en
ountered.6 Computational Comparison.In this se
tion we
ompare the performan
e of our modi�
ations against the original SMO algorithm.We implemented all these methods in Fortran and ran them using f77 on a 200 MHz Pentiumma
hine. The value, � = 0:001 was used for all experiments. The following standard problemswere used in our testing: Wis
onsin Breast Can
er data[1, 17℄; Two Spirals data[14℄; Che
kers10

Data Set �2 n mWis
onsin Breast Can
er 4.0 9 683Two Spirals 0.5 2 195Che
kers 0.5 2 465Adult-1 10.0 123 1605Adult-4 10.0 123 4781Adult-7 10.0 123 16100Web-1 10.0 300 2477Web-4 10.0 300 7366Web-7 10.0 300 24692Table 1: Data Set Properties.data[5℄; UCI Adult data[10℄; and Web page
lassi�
ation data[10,4℄. Ex
ept for Che
kers data, forwhi
h we
reated a random set of points on a 4� 4
he
kers grid (see [6℄), all other data sets weredownloaded from the sites mentioned in the above referen
es and were used in full for training. i.e.,no division into training/validation/test sets was made. In the
ase of Adult data set, the inputsare represented in a spe
ial binary format, as used by Platt in his testing of SMO. To study s
alingproperties as training data grows, Platt did staged experiments on the Adult and Web data. Wehave used only the data from the �rst, fourth and seventh stages. The gaussian kernel,k(xi; xj) = exp(�0:5kxi � xjk2=�2)was used in all experiments. The �2 values employed, together with n, the dimension of the input,and m, the number of training points, are given in Table 1. The �2 values given in the table were
hosen as follows. For the Adult and Web data the �2 values are the same as those used by Plattin his experiments on SMO; for other data, we
hose �2 suitably to get good generalization.When a parti
ular method is used for SVM design, the value of C is usually unknown, and it hasto be
hosen by trying a number of values and using a validation set. Therefore, good performan
eof a method over a range of C values is important. Therefore for ea
h problem we have tested thealgorithms over an appropriate range of C values.The
ost of updating the
a
he for Fi is the dominant part of the
omputational
ost. Hen
e11

the total number of kernel evaluations is a very good indi
ator of the
omputing
ost. Sin
esu
h a measure is pretty mu
h independent of the
omputing environment used, it is easy forothers developing new algorithms to
ompare their methods against the ones studied in this paper,without a
tually running these methods again. In Tables 2-10 we have given the total number ofkernel evaluations for the various problems tried. To point out the e�e
t of the
hoi
e of randomseed on the
ost asso
iated with the original SMO algorithm, we have reported
osts for two randomseeds. (We haven't done this for the Web data sin
e, for that data,
hange of random seed had noe�e
t on the
omputational
ost.) Our SMO modi�
ations do not require any random seed.It is very
lear that the modi�
ations outperform the original SMO algorithm. In many situa-tions the improvement in eÆ
ien
y is remarkable. Between the two modi�
ations, the se
ond onefares better overall.7 Con
lusion.In this paper we have pointed out an important sour
e of ineÆ
ien
y in Platt's SMO algorithmthat is
aused by the operation with a single threshold value. We have suggested two modi�
ationsof the SMO algorithm that over
ome the problem by eÆ
iently maintaining and updating twothreshold parameters. Our
omputational experiments show that these modi�
ations speed up theSMO algorithm
onsiderably in many situations. Platt has already established the SMO algorithmto be one of the fastest algorithms for SVM design. The modi�ed versions of SMO presented in thispaper enhan
e the value of the SMO algorithm even further. The ideas mentioned in this paperfor SVM
lassi�
ation
an also be extended to the SMO regression algorithm[13℄. We will reportthe results of that extension in another paper[12℄.

12

C SMO SMO SMO SMORandom Seed 1 Random Seed 2 Modi�
ation 1 Modi�
ation 20.02 47.855 36.822 1.193 3.5000.04 2.936 2.671 2.005 1.7250.06 2.114 2.648 2.035 1.9500.10 1.627 1.824 1.860 1.6800.20 1.647 2.045 1.775 1.4040.40 1.720 1.372 1.362 1.2550.50 1.613 1.618 1.265 1.1830.70 1.653 1.377 1.339 1.0651.00 1.531 1.560 1.474 1.2102.00 1.516 1.686 1.331 1.0193.00 1.625 1.690 1.314 0.990Table 2: Wis
onsin Breast Can
er data: Number of Kernel evaluations � 10�6Referen
es[1℄ R. Bennett and O.L. Mangasarian, Robust linear programming dis
rimination of two linearlyinseparable sets, Optimization Methods and Software, Vol.1, 1992, pp.23-34.[2℄ C.J.C. Burges, A tutorial on support ve
tor ma
hines for pattern re
ognition, Data Miningand Knowledge Dis
overy, Vol.2, Number 2, 1998.[3℄ T.T. Friess, Support ve
tor networks: The kernel adatron with bias and soft-margin, Te
h.Report, The University of SheÆeld, Dept. of Automati
 Control and Systems Engineering,SheÆeld, England, 1998.[4℄ T. Joa
hims, Making large-s
ale support ve
tor ma
hine learning pra
ti
al, in B. S
h�olkopf,C. Burges, A. Smola. Advan
es in Kernel Methods: Support Ve
tor Ma
hines, MIT Press,Cambridge, MA, De
ember 1998.[5℄ L. Kaufman, Solving the quadrati
 programming problem arising in support ve
tor
lassi�-
ation, in B. S
h�olkopf, C. Burges, A. Smola. Advan
es in Kernel Methods: Support Ve
tor13

C SMO SMO SMO SMORandom Seed 1 Random Seed 2 Modi�
ation 1 Modi�
ation 20.02 0.093 0.100 0.096 0.0960.04 0.110 0.134 0.097 0.0970.06 0.135 0.469 0.097 0.0970.10 0.116 0.117 0.097 0.0970.20 0.099 0.148 0.097 0.0970.40 0.255 0.179 0.172 0.1710.50 0.198 0.241 0.284 0.3230.70 0.457 0.445 0.240 0.2101.00 0.559 0.548 0.571 0.4432.00 3.343 6.055 2.900 1.5203.00 4.128 2.911 2.905 1.71010.0 3.343 4.413 3.043 1.690Table 3: Two Spirals data: Number of Kernel evaluations � 10�6C SMO SMO SMO SMORandom Seed 1 Random Seed 2 Modi�
ation 1 Modi�
ation 21.0 1.180 1.012 0.810 0.6705.0 1.320 1.165 1.275 1.04410.0 1.387 1.624 1.453 1.11350.0 3.241 2.584 2.353 1.739102 6.027 5.038 4.578 2.1195� 102 20.187 9.970 7.556 4.607103 17.518 16.943 7.321 8.5695� 103 62.729 96.136 49.270 38.660104 60.202 68.392 52.000 17.2745� 104 34.093 44.377 28.380 26.450Table 4: Che
kers data: Number of Kernel evaluations � 10�614

C SMO SMO SMO SMORandom Seed 1 Random Seed 2 Modi�
ation 1 Modi�
ation 20.10 1.129 1.077 0.324 0.3250.20 0.917 1.042 0.569 0.5700.40 0.752 0.751 0.546 0.5450.50 0.846 0.734 0.543 0.5390.70 0.834 0.944 0.545 0.5411.00 0.723 0.728 0.547 0.6472.00 0.891 0.868 0.630 0.6103.00 0.888 0.863 0.727 0.6965.00 1.053 1.082 0.845 0.74910.0 2.041 2.089 1.428 1.19820.0 3.921 3.904 2.463 1.94650.0 7.915 8.446 4.740 3.402100.0 13.315 12.358 6.543 4.502200.0 16.656 19.692 9.382 5.588500.0 24.019 25.676 14.715 6.942Table 5: Adult 1 data: Number of Kernel evaluations � 10�7

15

C SMO SMO SMO SMORandom Seed 1 Random Seed 2 Modi�
ation 1 Modi�
ation 20.10 9.812 9.290 6.856 5.8190.20 10.074 8.145 4.506 4.4990.40 7.739 7.745 4.336 4.3300.50 9.472 7.657 5.233 4.3410.70 6.706 6.700 4.388 4.3521.00 6.715 7.588 4.498 4.4672.00 7.163 7.200 5.034 4.9233.00 7.901 6.939 5.638 5.4465.00 8.980 9.631 7.204 5.88010.0 16.431 15.086 11.711 9.31020.0 33.564 33.288 20.864 15.38650.0 77.886 71.813 42.554 29.409100.0 128.383 126.491 66.100 48.257200.0 207.332 217.001 112.869 78.402500.0 384.589 393.042 216.034 122.202Table 6: Adult 4 data: Number of Kernel evaluations � 10�7
C SMO SMO SMO SMORandom Seed 1 Random Seed 2 Modi�
ation 1 Modi�
ation 20.10 193.680 206.289 31.590 31.5900.40 90.758 90.648 45.742 45.7201.00 90.091 71.677 47.993 47.4905.00 103.471 103.198 77.732 70.70020.0 370.405 380.250 224.689 153.932Table 7: Adult 7 data: Number of Kernel evaluations � 10�716

C SMO SMO SMOModi�
ation 1 Modi�
ation 20.10 0.679 0.633 0.6320.20 1.197 0.755 0.7270.40 1.215 0.893 0.9710.50 1.013 0.912 0.9180.70 0.963 1.070 1.0321.00 1.206 1.063 0.9882.00 1.365 1.260 1.1423.00 1.449 1.308 1.2705.00 1.252 1.178 1.24210.0 1.421 1.397 1.34820.0 1.570 1.364 1.22150.0 1.621 1.373 1.363100.0 1.666 1.301 1.250200.0 1.336 1.366 1.257500.0 1.378 1.442 1.420Table 8: Web 1 data: Number of Kernel evaluations � 10�7

17

C SMO SMO SMOModi�
ation 1 Modi�
ation 20.10 6.714 4.126 3.5780.20 7.686 3.937 4.0100.40 9.155 4.333 4.9720.50 8.808 5.102 5.1850.70 9.146 6.199 5.0591.00 8.154 6.156 6.0612.00 8.494 7.436 6.5943.00 9.887 8.331 9.0925.00 10.826 8.749 9.46410.0 9.685 11.193 12.40220.0 12.162 9.795 10.26550.0 10.733 10.973 10.305100.0 12.155 11.314 11.821200.0 12.169 10.177 10.907500.0 12.792 11.121 10.661Table 9: Web 4 data: Number of Kernel evaluations � 10�7

18

C SMO SMO SMOModi�
ation 1 Modi�
ation 20.10 134.575 33.218 38.7250.20 143.039 40.536 46.8770.40 132.594 48.952 40.1870.50 115.698 50.801 45.3820.70 106.148 42.707 53.2821.00 120.296 49.265 48.3102.00 146.941 56.402 64.2353.00 112.226 58.735 69.3295.00 115.890 82.549 69.30810.0 113.551 85.744 86.43620.0 103.516 95.809 93.83050.0 129.473 93.215 89.486100.0 136.820 91.090 110.006200.0 148.265 93.362 94.349500.0 125.315 94.553 105.505Table 10: Web 7 data: Number of Kernel evaluations � 10�7

19

Ma
hines, MIT Press, Cambridge, MA, De
ember 1998.[6℄ S.S. Keerthi, S.K. Shevade, C. Bhatta
haryya and K.R.K. Murthy, A fast iterative nearestpoint algorithm for support ve
tor ma
hine
lassi�er design, Te
h. Report TR-ISL-99-03, In-telligent Systems Lab, Dept. of Computer S
ien
e and Automation, Indian Institute of S
ien
e,Bangalore, India, Mar
h 1999. See: http://guppy.mpe.nus.edu.sg/~mpessk[7℄ O.L. Mangasarian and D.R. Musi
ant, Su

essive overrelaxation for support ve
tor ma
hines,Te
h. Report, Computer S
ien
es Dept., University of Wis
onsin, Madison, WI, USA, 1998.[8℄ E. Osuna, R. Freund and F. Girosi, An improved training algorithm for support ve
tor ma-
hines, in J. Prin
ipe, L. Giles, N. Morgan and E. Wilson, editors, Neural Networks for SignalPro
essing VII { Pro
eedings of the 1997 IEEE Workshop, pp.276-285, New York, 1997, IEEE.[9℄ J.C. Platt, Fast training of support ve
tor ma
hines using sequential minimal optimization, inB. S
h�olkopf, C. Burges, A. Smola. Advan
es in Kernel Methods: Support Ve
tor Ma
hines,MIT Press, Cambridge, MA, De
ember 1998.[10℄ J.C. Platt, Adult and Web Datasets. http://www.resear
h.mi
rosoft.
om/~jplatt[11℄ J.C. Platt, Using sparseness and analyti
 QP to speed training of support ve
tor ma
hines,in Advan
es in Neural Information Pro
essing Systems 11, M.S. Kearns, S.A. Solla and D.A.Cohn, eds., MIT Press, 1999.[12℄ S.K. Shevade, S.S. Keerthi, C. Bhatta
haryya and K.R.K. Murthy, Improved versions of theSMO algorithm for SVM regression, Te
h. Rept., Dept. of Me
h. and Prod. Engrg., NationalUniversity of Singapore, Singapore, Aug 1999, Under Preparation.[13℄ A.J. Smola and B. S
h�olkopf, A tutorial on support ve
tor regression, NeuroCOLT Te
hni
alReport TR-1998-030, Royal Holloway College, London, UK, 1998.[14℄ Two Spirals Data.ftp://ftp.boltz.
s.
mu.edu/pub/neural-ben
h/ben
h/two-spirals-v1.0.tar.gz[15℄ V. Vapnik, Estimation of Dependen
es Based on Empiri
al Data. Springer-Verlag, Berlin,1982. 20

[16℄ V. Vapnik, The Nature of Statisti
al Learning Theory. Springer-Verlag, New York, 1995.[17℄ Wis
onsin Breast Can
er Data.ftp://128.195.1.46/pub/ma
hine-learning-databases/breast-
an
er-wis
onsin/Appendix. Pseudo-Codes for Modi�ed SMO Algorithms.The pseudo-
odes for the improved SMO algorithms are presented below. Here, statements startingwith \%" denote
omments.target = desired output ve
torpoint = training point matrixf
a
he =
a
he ve
tor for Fi values% Note: Our definition of Fi is different from the Ei in Platt's SMO% algorithm. Our Fi does not subtra
t any threshold.pro
edure takeStep(i1,i2)% Mu
h of this pro
edure is same as that in Platt's SMO pseudo-
ode.if (i1 == i2) return 0alph1 = Lagrange multiplier for i1y1 = target[i1℄F1 = f
a
he[i1℄s = y1*y2Compute L, Hif (L == H)return 0k11 = kernel(point[i1℄,point[i1℄)k12 = kernel(point[i1℄,point[i2℄)k22 = kernel(point[i2℄,point[i2℄)eta = 2*k12-k11-k22if (eta < 0) 21

{ a2 = alph2 - y2*(F1-F2)/etaif (a2 < L) a2 = Lelse if (a2 > H) a2 = H}else{ Lobj = obje
tive fun
tion at a2=LHobj = obje
tive fun
tion at a2=Hif (Lobj > Hobj+eps)a2 = Lelse if (Lobj < Hobj-eps)a2 = Helsea2 = alph2}if (|a2-alph2| < eps*(a2+alph2+eps))return 0a1 = alph1+s*(alph2-a2)Update weight ve
tor to refle
t
hange in a1 & a2, if linear SVMUpdate f
a
he[i℄ for i in I_0 using new Lagrange multipliersStore a1 and a2 in the alpha array% The update below is simply a
hieved by keeping and updating information% about alpha_i being at 0, C or in between them. Using this together with% target[i℄ gives information as to whi
h index set i belongs.Update I_0, I_1, I_2, I_3 and I_4% Compute updated F values for i1 and i2...f
a
he[i1℄ = F1 + y1*(a1-alph1)*k11 + y2*(a2-alph2)*k12f
a
he[i2℄ = F2 + y1*(a1-alph1)*k12 + y2*(a2-alph2)*k22Compute (i_low, b_low) and (i_up, b_up) by applying equations (11a) and22

(11b), using only i1, i2 and indi
es in I_0; see item 3 of se
tion 5.return 1endpro
edurepro
edure examineExample(i2)y2 = target[i2℄alph2 = Lagrange multiplier for i2if (i2 is in I_0){ F2 = f
a
he[i2℄}else{
ompute F2 = F_i2 and set f
a
he[i2℄ = F2% Update (b_low, i_low) or (b_up,i_up) using (F2,i2)...if ((i2 is in I_1 or I_2) && (F2 < b_up))b_up = F2, i_up = i2else if ((i2 is in I_3 or I_4) && (F2 > b_low))b_low = F2, i_low = i2}% Che
k optimality using
urrent b_low and b_up and, if% violated, find an index i1 to do joint optimization with i2...optimality = 1if (i2 is in I_0, I_1 or I_2){ if (b_low-F2 > 2*tol)optimality = 0, i1 = i_low}if (i2 is in I_0, I_3 or I_4){ 23

if (F2-b_up > 2*tol)optimality = 0, i1 = i_up}if (optimality == 1)return 0% For i2 in I_0
hoose the better i1...if (i2 is in I_0){ if (b_low-F2 > F2-b_up)i1 = i_lowelsei1 = i_up}if takeStep(i1,i2)return 1elsereturn 0endpro
eduremain routine for Modifi
ation 1:initialize alpha array to all zeroinitialize b_up = -1, i_up to any one index of
lass 1initialize b_low = 1, i_low to any one index of
lass 2set f
a
he[i_low℄ = 1 and f
a
he[i_up℄ = -1numChanged = 0;examineAll = 1;while (numChanged > 0 | examineAll){ numChanged = 0;if (examineAll) 24

{ loop I over all training examplesnumChanged += examineExample(I)}else{ loop I over I_0numChanged += examineExample(I)% It is easy to
he
k if optimality on I_0 is attained...if (bup > blow - 2*tol) at any Iexit the loop after setting numChanged = 0}if (examineAll == 1)examineAll = 0else if (numChanged == 0)examineAll = 1}
main routine for Modifi
ation 2:initialize alpha array to all zeroinitialize b_up = -1, i_up to any one index of
lass 1initialize b_low = 1, i_low to any one index of
lass 2set f
a
he[i_low℄ = 1 and f
a
he[i_up℄ = -1numChanged = 0;examineAll = 1;while (numChanged > 0 | examineAll){ numChanged = 0;if (examineAll) 25

{ loop I over all training examplesnumChanged += examineExample(I)}else% The following loop is the only differen
e between the two SMO% modifi
ations. Whereas, in modifi
ation 1, the inner loop sele
ts% i2 from I_0 sequentially, here i2 is always set to the
urrent% i_low and i1 is set to the
urrent i_up;
learly, this
orresponds% to
hoosing the worst violating pair using members of I_0 and some% other indi
es.{ inner_loop_su

ess = 1;do until ((bup > blow - 2*tol) | inner_loop_su

ess = 0){ i2 = i_lowy2 = target(i2)alph2 = Lagrange multiplier for i2F2 = f
a
he[i2℄i1 = i_upinner_loop_su

ess = takeStep(i_up,i_low)numChanged += inner_loop_su

ess}numChanged = 0}if (examineAll == 1)examineAll = 0else if (numChanged == 0)examineAll = 1} 26

27

