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Abstra
tThis paper points out an important sour
e of 
onfusion and ineÆ
ien
y in Platt's SequentialMinimal Optimization (SMO) algorithm that is 
aused by the use of a single threshold value.Using 
lues from the KKT 
onditions for the dual problem, two threshold parameters are em-ployed to derive modi�
ations of SMO. These modi�ed algorithms perform signi�
antly fasterthan the original SMO on all ben
hmark datasets tried.1 Introdu
tionIn the past few years, there has been a lot of ex
itement and interest in Support Ve
tor Ma
hines[16,2℄ be
ause they have yielded ex
ellent generalization performan
e on a wide range of problems.Re
ently, fast iterative algorithms that are also easy to implement have been suggested[9,4,7,3,6℄.Platt's Sequential Minimization Algorithm (SMO)[9,11℄ is an important example. A remarkablefeature of SMO is that it is also extremely easy to implement. Comparative testing against otheralgorithms, done by Platt, have shown that SMO is often mu
h faster and has better s
alingproperties.In this paper we enhan
e the value of SMO even further. In parti
ular, we point out animportant sour
e of 
onfusion and ineÆ
ien
y 
aused by the way SMO maintains and updates asingle threshold value. Getting 
lues from optimality 
riteria asso
iated with the KKT 
onditionsfor the dual, we suggest the use of two threshold parameters and devise two modi�ed versions ofSMO that remove the 
onfusion asso
iated with SMO and are mu
h more eÆ
ient than the originalSMO. Computational 
omparison on a number of ben
hmark datasets shows that the modi�
ationsperform signi�
antly faster than the original SMO in most situations. The ideas mentioned in thispaper 
an also be applied to the SMO regression algorithm[13℄. We will report the results of thatextension in another paper[12℄.The paper is organized as follows. In se
tion 2 we brie
y dis
uss the SVM problem formulation,the dual problem and the asso
iated KKT optimality 
onditions. We also point out how these
onditions lead to proper 
riteria for terminating algorithms for designing SVM 
lassi�ers. Se
tion3 gives a short summary of Platt's SMO algorithm. In se
tion 4 we point out the problem asso
iatedwith the way SMO uses a single threshold value, and des
ribe the modi�ed algorithms in se
tion5. Computational 
omparison is done in se
tion 6. The appendix gives the pseudo-
odes for our1



SMO modi�
ations. These pseudo-
odes are very similar to those for the SMO given by Platt in[9℄. They are short, and, it is very easy to develop a working 
ode for SVM design using them.2 The SVM Problem and Optimality Conditions.The basi
 problem addressed in this paper is the two 
ategory 
lassi�
ation problem. The tutorialby Burges[2℄ gives a good overview of the solution of this problem using SVMs. Throughout thepaper we will use x to denote the input ve
tor of the support ve
tor ma
hine and z to denote thefeature spa
e ve
tor whi
h is related to x by a transformation, z = �(x). As in all SVM designs,we do not assume � to be known; all 
omputations will be done using only the kernel fun
tion,k(x; x̂) = �(x) � �(x̂), where \�" denotes inner produ
t in the z spa
e. Let f(xi; yi)g denote thetraining set, where xi is the i-th input pattern and yi is the 
orresponding target value; yi = 1means xi is in 
lass 1 and yi = �1 means xi is in 
lass 2. Let zi = �(xi). The optimization problemsolved by the support ve
tor ma
hine is:min 12kwk2 + CXi �i (1a)subje
t to : yi(w � zi � b) � 1� �i 8 i; �i � 0 8 i (1b)This problem is referred to as the primal problem. The Lagrangian for this problem is:L = 12kwk2 + CXi �i +Xi �i[1� �i � yi(w � zi � b)℄�Xi �i�iThe KKT optimality 
onditions are given by:rwL = w �Xi �iyizi = 0; �L�b =Xi �iyi = 0; �L��i = C � �i � �i = 0 8i;�i � 0; �i[1� �i � yi(w � zi � b)℄ = 0; �i � 0; �i�i = 0 8i:We will refer to the �i's as Lagrange multipliers. Let us de�new(�) =Xi �iyiziUsing Wolfe duality theory[16,2℄ it 
an be shown that the �i's are obtained by solving the followingDual problem: maxW (�) =Xi �i � 12w(�) � w(�) (2a)2



subje
t to 0 � �i � C; Xi �iyi = 0 (2b)On
e the �i's are obtained, the other primal variables, w, b, � and � 
an be easily determinedby using the KKT 
onditions mentioned earlier. It is possible that the solution is non-unique; forinstan
e, when all �is take the boundary values of 0 and C, it is possible that b is not unique.The numeri
al approa
h in SVM design is to solve the dual (instead of the primal) be
ause itis a �nite-dimensional optimization problem. (Note that w(�) � w(�) = PiPj yiyj�i�jk(xi; xj).)To derive proper stopping 
onditions for algorithms whi
h solve the dual, it is important to writedown the optimality 
onditions for the dual. The Lagrangian for the dual is:�L = 12w(�) � w(�)�Xi �i �Xi Æi�i +Xi �i(�i � C)� �Xi �iyiDe�ne Fi = w(�) � zi � yi =Xj �jyjk(xi; xj)� yiThe KKT 
onditions for the dual problem are:� �L��i = (Fi � �)yi � Æi + �i = 0; Æi � 0; Æi�i = 0; �i � 0; �i(�i � C) = 0 8 iThese 
onditions 
an be simpli�ed by 
onsidering three 
ases.Case 1. �i = 0 Æi � 0; �i = 0 ) (Fi � �)yi � 0 (3a)Case 2. 0 < �i < C Æi = 0; �i = 0 ) (Fi � �)yi = 0 (3b)Case 3. �i = C Æi = 0; �i � 0 ) (Fi � �)yi � 0 (3
)De�ne the following index sets at a given �: I0 = fi : 0 < �i < Cg; I1 = fi : yi = 1; �i = 0g;I2 = fi : yi = �1; �i = Cg; I3 = fi : yi = 1; �i = Cg; and, I4 = fi : yi = �1; �i = 0g. Note thatthese index sets depend on �. The ne
essary 
onditions in (3a)-(3
) 
an be rewritten as� � Fi 8 i 2 I0 [ I1 [ I2 ; � � Fi 8 i 2 I0 [ I3 [ I4 (4)De�ne: bup = minfFi : i 2 I0 [ I1 [ I2g and blow = maxfFi : i 2 I0 [ I3 [ I4g (5)3



Then optimality 
onditions will hold at some � i�blow � bup (6)It is easy to see the 
lose relationship between the threshold parameter b in the primal problemand the multiplier, �. In parti
ular, at optimality, � and b are identi
al. Therefore, in the rest ofthe paper � and b will denote one and the same quantity.We will say that an index pair (i; j) de�nes a violation at � if one of the following sets of
onditions holds: i 2 I0 [ I3 [ I4 ; j 2 I0 [ I1 [ I2 and Fi > Fj (7a)i 2 I0 [ I1 [ I2 ; j 2 I0 [ I3 [ I4 and Fi < Fj (7b)Note that optimality 
onditions will hold at � i� there does not exist any index pair (i; j) thatde�nes a violation.Sin
e, in numeri
al solution, it is usually not possible to a
hieve optimality exa
tly, there is aneed to de�ne approximate optimality 
onditions. The 
ondition (6) 
an be repla
ed byblow � bup + 2� (8)where � is a positive toleran
e parameter. (In the pseudo-
odes given in [9℄ and the appendix ofthis paper, this parameter is referred to as tol.) Correspondingly, the de�nition of violation 
anbe altered by repla
ing (7a) and (7b) by:i 2 I0 [ I3 [ I4 ; j 2 I0 [ I1 [ I2 and Fi > Fj + 2� (9a)i 2 I0 [ I1 [ I2 ; j 2 I0 [ I3 [ I4 and Fi < Fj � 2� (9b)Hereafter in the paper, when optimality is mentioned it will mean approximate optimality.Sin
e � 
an be pla
ed halfway between blow and bup, approximate optimality 
onditions willhold i� there exists a � su
h that (3a)-(3
) are satis�ed with a � -margin, i.e.,(Fi � �)yi � �� if �i = 0 (10a)j(Fi � �)j � � if 0 < �i < C (10b)(Fi � �)yi � � if �i = C (10
)4



(10a)-(10
) are the approximate optimality 
onditions employed by Platt[9℄, Joa
hims[4℄ and others.In [6℄ we have argued the soundness of using the above approximate 
onditions as a stopping
riterion for dual algorithms.3 Platt's SMO Algorithm.A number of algorithms have been suggested for solving the dual problem. Traditional quadrati
programming algorithms su
h as the a
tive set method[5℄ and interior point algorithms[13℄ arenot suitable for large size problems be
ause of the following reasons. First, they require that thekernel matrix k(xi; xj) be 
omputed and stored in memory. This requires extremely large memory.Se
ond, these methods involve expensive matrix operations su
h as the Cholesky de
omposition ofa large submatrix of the kernel matrix. Third, for pra
titioners who would like to develop theirown implementation of an SVM 
lassi�er, 
oding these algorithms is very diÆ
ult.Several attempts have been made to develop methods that over
ome some or all of these prob-lems. Vapnik[15℄ made the observation that if the number of support ve
tors is small and theyare known beforehand, then one 
ould dire
tly solve the redu
ed problem involving only the sup-port ve
tors and thereby deal with signi�
antly larger datasets. Sin
e the support ve
tors are notknown, a beginning set of ve
tors is 
hosen and 
hunked into memory and the resulting problem issolved. Then the remaining ve
tors are tested for optimality and those that violate are in
luded.The pro
ess is repeated until a solution is obtained. This is referred to as the 
hunking algorithm.If the number of support ve
tors itself is large then the 
hunking algorithm is also unsuitable.Osuna et.al.[8℄ suggested the use of only a subset of the ve
tors as a working subset and optimizeon the 
orresponding �i's while freezing the others. Though the arguments given by Osuna et.al.about the 
onvergen
e of the algorithm are in
orre
t, it is expe
ted that the algorithm will 
onvergeasymptoti
ally as the number of steps goes to in�nity. Joa
hims[4℄ has developed an eÆ
ientalgorithm for SVM by building upon the basi
 idea given in [8℄.Re
ently Platt suggested an algorithm[9℄ { Sequential Minimal Optimization (SMO) { that putsthe subset sele
tion in Osuna et.al's algorithm to the extreme by iteratively sele
ting subsets only ofsize 2. Note that, be
ause of the presen
e of the equality 
onstraint (see (2b)), at least two variablesneed to be 
hosen for optimization so as to take a step. Platt's 
omputational experiments[9,11℄5



have shown SMO to be very mu
h faster than the 
hunking algorithm; it also s
ales mu
h betteras problem size grows. The SMO algorithm also fares better than Joa
him's algorithm[4℄.Let us give a brief des
ription of the SMO algorithm. Be
ause the working set is only ofsize 2 and the equality 
onstraint 
an be used to eliminate one of the two Lagrange multipliers,the optimization problem at ea
h step is a quadrati
 minimization in just one variable. It isstraightforward to write down an analyti
 solution for it. Complete details are derived in [9℄. Thepro
edure, takeStep (whi
h is a part of the pseudo
ode given there) gives a 
lear des
ription of theimplementation. There is no need to re
all all details here. We only make one important 
ommenton the role of the threshold parameter, �. As in [9℄ de�ne the output error on the i-th pattern asEi = Fi � �Consistent with the pseudo
ode of [9℄ let us 
all the indi
es of the two multipliers 
hosen foroptimization in one step as i2 and i1. A look at the details in [9℄ shows that to take a step byvarying �i1 and �i2 , we only need to know Ei1 � Ei2 = Fi1 � Fi2 . Therefore a knowledge of thevalue of � is not needed to take a step.The method followed to 
hoose i1 and i2 at ea
h step is 
ru
ial for eÆ
ient solution of theproblem. Based on a number of experiments Platt 
ame up with a good set of heuristi
s. Heemploys a two loop approa
h: the outer loop 
hooses i2; and, for a 
hosen i2, the inner loop
hooses i1. The outer loop iterates over all patterns violating the optimality 
onditions, �rst onlyover those with Lagrange multipliers neither on the upper nor lower boundary, and on
e all ofthem are satis�ed, over all patterns violating the optimality 
onditions to ensure that the problemhas indeed been solved. Clearly, the algorithm spends a large fra
tion of its time adjusting themultipliers whi
h take non-boundary values and only a small amount of time with the multipliersthat take boundary values. Appropriately, therefore, Platt maintains and updates a 
a
he for Eivalues for indi
es i 
orresponding to non-boundary multipliers. The remaining Ei are 
omputed asand when needed.Let us now see how the SMO algorithm 
hooses i1. The aim is to make a large in
rease in theobje
tive fun
tion. Sin
e it is expensive to try out all possible 
hoi
es of i1 and 
hoose the one thatgives the best in
rease in obje
tive fun
tion, the index i1 is 
hosen to maximize jEi2 �Ei1 j. (If wede�ne �(t) = W (�(t)) where t is a real parameter that denotes the 
hange in the values of yi1�i1and �yi2�i2 , and �(t) is the 
orresponding Lagrangian multiplier ve
tor, then j�0(0)j = jEi1�Ei2 j.)6



Sin
e Ei is available in 
a
he for non-boundary multiplier indi
es, only su
h indi
es are initially usedin the above 
hoi
e of i1. If su
h a 
hoi
e of i1 does not yield suÆ
ient progress, then the followingsteps are taken. Starting from a randomly 
hosen index, all indi
es 
orresponding to non-boundmultipliers are tried as 
hoi
es for i1, one by one. If still suÆ
ient progress is not possible, allindi
es are tried as 
hoi
es for i1, one by one, again starting from a randomly 
hosen index. Thusthe 
hoi
e of random seed a�e
ts the running time of SMO; see, for example, the 
omputational
osts mentioned in se
tion 5.Although a value of � is not needed to take a step, it is needed if (10a)-(10
) are employed for
he
king optimality. In the SMO algorithm � is updated after ea
h step. If, after a step involving(i1; i2), one of �i1 , �i2 (or both) takes a non-boundary value then (3b) is exploited to update thevalue of �. In the rare 
ase that this does not happen, there exists a whole interval, say, [�low; �up℄,of admissible thresholds for �i1 and �i2 . In this situation SMO simply 
hooses: � = (�low+�up)=2.In the next se
tion we will see the problems 
aused by su
h a 
hoi
e.4 Problems with SMO Algorithm.SMO is a 
arefully organized algorithm whi
h has ex
ellent 
omputational eÆ
ien
y. However,be
ause of its way of 
omputing and using a single threshold value it 
an get into a 
onfused endstate and 
an also be
ome ineÆ
ient. Let us illustrate the �rst issue using a numeri
al example.Example 1. Consider the following example where there are 3 patterns:y1 = �1; y2 = y3 = +1; C = 14 ; Kernel Matrix = 266664 1 0 00 1 20 2 6 377775Suppose we start from �1 = �2 = �3 = 0 (the usual point where SMO starts). Cal
ulating Fiwe get F1 = 1, F2 = F3 = �1. All three indi
es violate the optimality 
onditions. (Note thatblow = 1 and bup = �1; SMO uses � = 0 to 
he
k optimality 
onditions.) Suppose SMO 
hoosesindi
es 1 and 2 for optimization, keeping �3 �xed at 0. It is easy to 
he
k that this leads to thepoint, �1 = �2 = C, �3 = 0. At this new point we have F1 = 3=4, F2 = �3=4, F3 = �1=2. Notethat blow = �3=4 and bup = �1=2 and hen
e optimality 
onditions are satis�ed. SMO 
hooses� = (F1 + F2)=2 = 0. If this value of � is used to 
he
k optimality, the third training pattern7



shows a violation of the optimality 
riterion employed by Platt (i.e., (10)), but a
tually there isno violation! Note that any � 
hosen from the interval, [�3=4; �1=2℄ would have ensured theveri�
ation of (10).This example 
learly sums up our �rst 
on
ern. Be
ause SMO 
onstrains itself unne
essarilyto a parti
ular single 
hoi
e of the threshold, �, it gets into trouble, espe
ially at termination.The issue raised here appears to be somewhat pathologi
al sin
e the presen
e of even a singleindex i with 0 < �i < C for
es � to be unique and so there is really no serious problem. (Notethat unless C takes 
ertain extreme values, there is little possibility of not having an index i with0 < �i < C.) But we would like to point out that there is still a pra
ti
al problem of ineÆ
ien
y.At any instant, the SMO algorithm �xes � based on the 
urrent two indi
es whi
h are beingoptimized. However, while 
he
king whether the remaining examples violate optimality or not, itis quite possible that a di�erent, shifted 
hoi
e of � may do a better job. So, in the SMO algorithmit is quite possible that, even though � has rea
hed a value where optimality is satis�ed (i.e., (8)),SMO hasn't dete
ted this be
ause it has not identi�ed the 
orre
t 
hoi
e of �. It is also quitepossible that, a parti
ular index may appear to violate the optimality 
onditions be
ause (10) isemployed using an \in
orre
t" value of � although this index may not be able to pair with anotherto de�ne a violation. In su
h a situation the SMO algorithm does an expensive and wasteful sear
hlooking for a se
ond index so as to take a step. We believe that this is a major sour
e of ineÆ
ien
yin the SMO algorithm.5 Modi�
ations of the SMO Algorithm.In this se
tion we suggest two modi�ed versions of the SMO algorithm, ea
h of whi
h over
omesthe problems mentioned in the last se
tion. As we will see in the 
omputational evaluation ofse
tion 6, these modi�
ations are almost always better than the original SMO algorithm and, inmost situations they give quite a remarkable improvement in eÆ
ien
y when tested on severalben
hmark problems.In short, the modi�
ations avoid the use of a single threshold value � and the use of (10) for
he
king optimality. Instead, two threshold parameters, bup and blow are maintained and (8) (or(9)) is employed for 
he
king optimality. The two modi�
ations are adequately des
ribed by the8



pseudo-
odes given in the appendix. We only give some additional pointers that will help to givean easy understanding of the pseudo-
odes. We assume that the reader is familiar with [9℄ and thepseudo-
odes given there.1. Suppose, at any instant, Fi is available for all i. Let i low and i up be indi
es su
h thatFi low = blow = maxfFi : i 2 I0 [ I3 [ I4g (11a)Fi up = bup = minfFi : i 2 I0 [ I1 [ I2g (11b)Then 
he
king a parti
ular i for optimality is easy. For example, suppose i 2 I1 [ I2. We onlyhave to 
he
k if Fi < Fi low � 2� . If this 
ondition holds then there is a violation, and, in that 
aseSMO's takeStep pro
edure 
an be applied to the index pair, (i; i low). Similar steps 
an be givenfor indi
es in the other sets. Thus, in our approa
h, the 
he
king of optimality of i2 and the 
hoi
eof the se
ond index, i1 go hand in hand, unlike the original SMO algorithm. As we will see below,we 
ompute and use (i low; blow) and (i up; bup) via an eÆ
ient updating pro
ess.2. To be eÆ
ient, we would, like in the SMO algorithm, spend mu
h of the e�ort altering �i,i 2 I0; 
a
he for Fi, i 2 I0 are maintained and updated to do this eÆ
iently. And, when optimalityholds for all i 2 I0, only then examine all indi
es for optimality.3. Some extra steps are added to the takeStep pro
edure. After a su

essful step using a pairof indi
es, (i2; i1), let ~I = I0 [ fi1; i2g. We 
ompute, partially, (i low; blow) and (i up; bup) using ~Ionly (i.e., use only i 2 ~I in (11)). Note that these extra steps are inexpensive be
ause 
a
he forfFi, i 2 I0g is available and updates of Fi1 , Fi2 are easily done. A 
areful look shows that, sin
ei2 and i1 have been just involved in a su

essful step, ea
h of the two sets, ~I \ (I0 [ I1 [ I2) and~I \ (I0 [ I3 [ I4), is non-empty; hen
e the partially 
omputed (i low; blow) and (i up; bup) will notbe null elements. Sin
e i low and i up 
ould take values from fi2; i1g and they are used as 
hoi
esfor i1 in the subsequent step (see item 1 above), we keep the values of Fi1 and Fi2 also in 
a
he.4. When working only with �i, i 2 I0, i.e., a loop with examineAll=0, one should note that,if (8) holds at some point then it implies that optimality holds as far as I0 is 
on
erned. (This isbe
ause, as mentioned in item 3 above, the 
hoi
e of blow and bup are in
uen
ed by all indi
es inI0.) This gives an easy way of exiting this loop.5. There are two ways of implementing the loop involving indi
es in I0 only (examineAll=0).Method 1. This is in line with what is done in SMO. Loop through all i2 2 I0. For ea
h i2,9




he
k optimality and, if violated, 
hoose i1 appropriately. For example, if Fi2 < Fi low � 2� thenthere is a violation, and, in that 
ase 
hoose i1 = i low.Method 2. Always work with the worst violating pair, i.e., 
hoose i2 = i low and i1 = i up.Depending on whi
h one of these methods is used, we 
all the resulting overall modi�
ation ofSMO as SMO-Modi�
ation 1 and SMO-Modi�
ation 2.6. When optimality on I0 holds, as already said we 
ome ba
k to 
he
k optimality on all indi
es(examineAll=1). Here we loop through all indi
es, one by one. Sin
e (blow; i low) and (bup; i up)have been partially 
omputed using I0 only, we update these quantities as ea
h i is examined. For agiven i, Fi is 
omputed �rst and optimality is 
he
ked using the 
urrent (blow; i low). For example,if i 2 I1 [ I2 and Fi < blow � 2� , then there is a violation, in whi
h 
ase we take a step using(i; i low). On the other hand, if there is no violation, then (i up; bup) are modi�ed using Fi, i.e, ifFi < bup then we do: i up := i and bup := Fi.7. Suppose we do as des
ribed above. What happens if there is no violation for any i in a loophaving examineAll=11? Can we 
on
lude that optimality holds for all i? The answer is: YES. Thisis easy to see from the following argument. Suppose, by 
ontradi
tion, there does exist one (i; j)pair su
h that they de�ne a violation, i.e., they satisfy (9). Let us say, i < j. Then j would nothave satis�ed the optimality 
he
k in the above des
ribed implementation be
ause Fi would have,earlier than j is seen, a�e
ted either the 
al
ulation of blow and/or bup settings. In other words,even if i is mistakenly taken as having satis�ed optimality earlier in the loop, j will be dete
tedas violating optimality when it is analysed. Only when (8) holds it is possible for all indi
es tosatisfy the optimality 
he
ks. Furthermore, when (8) holds and the loop over all indi
es has been
ompleted, the true values of bup and blow, as de�ned in (5) would have been 
omputed sin
e allindi
es have been en
ountered.6 Computational Comparison.In this se
tion we 
ompare the performan
e of our modi�
ations against the original SMO algorithm.We implemented all these methods in Fortran and ran them using f77 on a 200 MHz Pentiumma
hine. The value, � = 0:001 was used for all experiments. The following standard problemswere used in our testing: Wis
onsin Breast Can
er data[1, 17℄; Two Spirals data[14℄; Che
kers10



Data Set �2 n mWis
onsin Breast Can
er 4.0 9 683Two Spirals 0.5 2 195Che
kers 0.5 2 465Adult-1 10.0 123 1605Adult-4 10.0 123 4781Adult-7 10.0 123 16100Web-1 10.0 300 2477Web-4 10.0 300 7366Web-7 10.0 300 24692Table 1: Data Set Properties.data[5℄; UCI Adult data[10℄; and Web page 
lassi�
ation data[10,4℄. Ex
ept for Che
kers data, forwhi
h we 
reated a random set of points on a 4� 4 
he
kers grid (see [6℄), all other data sets weredownloaded from the sites mentioned in the above referen
es and were used in full for training. i.e.,no division into training/validation/test sets was made. In the 
ase of Adult data set, the inputsare represented in a spe
ial binary format, as used by Platt in his testing of SMO. To study s
alingproperties as training data grows, Platt did staged experiments on the Adult and Web data. Wehave used only the data from the �rst, fourth and seventh stages. The gaussian kernel,k(xi; xj) = exp(�0:5kxi � xjk2=�2)was used in all experiments. The �2 values employed, together with n, the dimension of the input,and m, the number of training points, are given in Table 1. The �2 values given in the table were
hosen as follows. For the Adult and Web data the �2 values are the same as those used by Plattin his experiments on SMO; for other data, we 
hose �2 suitably to get good generalization.When a parti
ular method is used for SVM design, the value of C is usually unknown, and it hasto be 
hosen by trying a number of values and using a validation set. Therefore, good performan
eof a method over a range of C values is important. Therefore for ea
h problem we have tested thealgorithms over an appropriate range of C values.The 
ost of updating the 
a
he for Fi is the dominant part of the 
omputational 
ost. Hen
e11



the total number of kernel evaluations is a very good indi
ator of the 
omputing 
ost. Sin
esu
h a measure is pretty mu
h independent of the 
omputing environment used, it is easy forothers developing new algorithms to 
ompare their methods against the ones studied in this paper,without a
tually running these methods again. In Tables 2-10 we have given the total number ofkernel evaluations for the various problems tried. To point out the e�e
t of the 
hoi
e of randomseed on the 
ost asso
iated with the original SMO algorithm, we have reported 
osts for two randomseeds. (We haven't done this for the Web data sin
e, for that data, 
hange of random seed had noe�e
t on the 
omputational 
ost.) Our SMO modi�
ations do not require any random seed.It is very 
lear that the modi�
ations outperform the original SMO algorithm. In many situa-tions the improvement in eÆ
ien
y is remarkable. Between the two modi�
ations, the se
ond onefares better overall.7 Con
lusion.In this paper we have pointed out an important sour
e of ineÆ
ien
y in Platt's SMO algorithmthat is 
aused by the operation with a single threshold value. We have suggested two modi�
ationsof the SMO algorithm that over
ome the problem by eÆ
iently maintaining and updating twothreshold parameters. Our 
omputational experiments show that these modi�
ations speed up theSMO algorithm 
onsiderably in many situations. Platt has already established the SMO algorithmto be one of the fastest algorithms for SVM design. The modi�ed versions of SMO presented in thispaper enhan
e the value of the SMO algorithm even further. The ideas mentioned in this paperfor SVM 
lassi�
ation 
an also be extended to the SMO regression algorithm[13℄. We will reportthe results of that extension in another paper[12℄.
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C SMO SMO SMO SMORandom Seed 1 Random Seed 2 Modi�
ation 1 Modi�
ation 20.02 47.855 36.822 1.193 3.5000.04 2.936 2.671 2.005 1.7250.06 2.114 2.648 2.035 1.9500.10 1.627 1.824 1.860 1.6800.20 1.647 2.045 1.775 1.4040.40 1.720 1.372 1.362 1.2550.50 1.613 1.618 1.265 1.1830.70 1.653 1.377 1.339 1.0651.00 1.531 1.560 1.474 1.2102.00 1.516 1.686 1.331 1.0193.00 1.625 1.690 1.314 0.990Table 2: Wis
onsin Breast Can
er data: Number of Kernel evaluations � 10�6Referen
es[1℄ R. Bennett and O.L. Mangasarian, Robust linear programming dis
rimination of two linearlyinseparable sets, Optimization Methods and Software, Vol.1, 1992, pp.23-34.[2℄ C.J.C. Burges, A tutorial on support ve
tor ma
hines for pattern re
ognition, Data Miningand Knowledge Dis
overy, Vol.2, Number 2, 1998.[3℄ T.T. Friess, Support ve
tor networks: The kernel adatron with bias and soft-margin, Te
h.Report, The University of SheÆeld, Dept. of Automati
 Control and Systems Engineering,SheÆeld, England, 1998.[4℄ T. Joa
hims, Making large-s
ale support ve
tor ma
hine learning pra
ti
al, in B. S
h�olkopf,C. Burges, A. Smola. Advan
es in Kernel Methods: Support Ve
tor Ma
hines, MIT Press,Cambridge, MA, De
ember 1998.[5℄ L. Kaufman, Solving the quadrati
 programming problem arising in support ve
tor 
lassi�-
ation, in B. S
h�olkopf, C. Burges, A. Smola. Advan
es in Kernel Methods: Support Ve
tor13



C SMO SMO SMO SMORandom Seed 1 Random Seed 2 Modi�
ation 1 Modi�
ation 20.02 0.093 0.100 0.096 0.0960.04 0.110 0.134 0.097 0.0970.06 0.135 0.469 0.097 0.0970.10 0.116 0.117 0.097 0.0970.20 0.099 0.148 0.097 0.0970.40 0.255 0.179 0.172 0.1710.50 0.198 0.241 0.284 0.3230.70 0.457 0.445 0.240 0.2101.00 0.559 0.548 0.571 0.4432.00 3.343 6.055 2.900 1.5203.00 4.128 2.911 2.905 1.71010.0 3.343 4.413 3.043 1.690Table 3: Two Spirals data: Number of Kernel evaluations � 10�6C SMO SMO SMO SMORandom Seed 1 Random Seed 2 Modi�
ation 1 Modi�
ation 21.0 1.180 1.012 0.810 0.6705.0 1.320 1.165 1.275 1.04410.0 1.387 1.624 1.453 1.11350.0 3.241 2.584 2.353 1.739102 6.027 5.038 4.578 2.1195� 102 20.187 9.970 7.556 4.607103 17.518 16.943 7.321 8.5695� 103 62.729 96.136 49.270 38.660104 60.202 68.392 52.000 17.2745� 104 34.093 44.377 28.380 26.450Table 4: Che
kers data: Number of Kernel evaluations � 10�614



C SMO SMO SMO SMORandom Seed 1 Random Seed 2 Modi�
ation 1 Modi�
ation 20.10 1.129 1.077 0.324 0.3250.20 0.917 1.042 0.569 0.5700.40 0.752 0.751 0.546 0.5450.50 0.846 0.734 0.543 0.5390.70 0.834 0.944 0.545 0.5411.00 0.723 0.728 0.547 0.6472.00 0.891 0.868 0.630 0.6103.00 0.888 0.863 0.727 0.6965.00 1.053 1.082 0.845 0.74910.0 2.041 2.089 1.428 1.19820.0 3.921 3.904 2.463 1.94650.0 7.915 8.446 4.740 3.402100.0 13.315 12.358 6.543 4.502200.0 16.656 19.692 9.382 5.588500.0 24.019 25.676 14.715 6.942Table 5: Adult 1 data: Number of Kernel evaluations � 10�7
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C SMO SMO SMO SMORandom Seed 1 Random Seed 2 Modi�
ation 1 Modi�
ation 20.10 9.812 9.290 6.856 5.8190.20 10.074 8.145 4.506 4.4990.40 7.739 7.745 4.336 4.3300.50 9.472 7.657 5.233 4.3410.70 6.706 6.700 4.388 4.3521.00 6.715 7.588 4.498 4.4672.00 7.163 7.200 5.034 4.9233.00 7.901 6.939 5.638 5.4465.00 8.980 9.631 7.204 5.88010.0 16.431 15.086 11.711 9.31020.0 33.564 33.288 20.864 15.38650.0 77.886 71.813 42.554 29.409100.0 128.383 126.491 66.100 48.257200.0 207.332 217.001 112.869 78.402500.0 384.589 393.042 216.034 122.202Table 6: Adult 4 data: Number of Kernel evaluations � 10�7
C SMO SMO SMO SMORandom Seed 1 Random Seed 2 Modi�
ation 1 Modi�
ation 20.10 193.680 206.289 31.590 31.5900.40 90.758 90.648 45.742 45.7201.00 90.091 71.677 47.993 47.4905.00 103.471 103.198 77.732 70.70020.0 370.405 380.250 224.689 153.932Table 7: Adult 7 data: Number of Kernel evaluations � 10�716



C SMO SMO SMOModi�
ation 1 Modi�
ation 20.10 0.679 0.633 0.6320.20 1.197 0.755 0.7270.40 1.215 0.893 0.9710.50 1.013 0.912 0.9180.70 0.963 1.070 1.0321.00 1.206 1.063 0.9882.00 1.365 1.260 1.1423.00 1.449 1.308 1.2705.00 1.252 1.178 1.24210.0 1.421 1.397 1.34820.0 1.570 1.364 1.22150.0 1.621 1.373 1.363100.0 1.666 1.301 1.250200.0 1.336 1.366 1.257500.0 1.378 1.442 1.420Table 8: Web 1 data: Number of Kernel evaluations � 10�7
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C SMO SMO SMOModi�
ation 1 Modi�
ation 20.10 6.714 4.126 3.5780.20 7.686 3.937 4.0100.40 9.155 4.333 4.9720.50 8.808 5.102 5.1850.70 9.146 6.199 5.0591.00 8.154 6.156 6.0612.00 8.494 7.436 6.5943.00 9.887 8.331 9.0925.00 10.826 8.749 9.46410.0 9.685 11.193 12.40220.0 12.162 9.795 10.26550.0 10.733 10.973 10.305100.0 12.155 11.314 11.821200.0 12.169 10.177 10.907500.0 12.792 11.121 10.661Table 9: Web 4 data: Number of Kernel evaluations � 10�7
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C SMO SMO SMOModi�
ation 1 Modi�
ation 20.10 134.575 33.218 38.7250.20 143.039 40.536 46.8770.40 132.594 48.952 40.1870.50 115.698 50.801 45.3820.70 106.148 42.707 53.2821.00 120.296 49.265 48.3102.00 146.941 56.402 64.2353.00 112.226 58.735 69.3295.00 115.890 82.549 69.30810.0 113.551 85.744 86.43620.0 103.516 95.809 93.83050.0 129.473 93.215 89.486100.0 136.820 91.090 110.006200.0 148.265 93.362 94.349500.0 125.315 94.553 105.505Table 10: Web 7 data: Number of Kernel evaluations � 10�7
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onsin Breast Can
er Data.ftp://128.195.1.46/pub/ma
hine-learning-databases/breast-
an
er-wis
onsin/Appendix. Pseudo-Codes for Modi�ed SMO Algorithms.The pseudo-
odes for the improved SMO algorithms are presented below. Here, statements startingwith \%" denote 
omments.target = desired output ve
torpoint = training point matrixf
a
he = 
a
he ve
tor for Fi values% Note: Our definition of Fi is different from the Ei in Platt's SMO% algorithm. Our Fi does not subtra
t any threshold.pro
edure takeStep(i1,i2)% Mu
h of this pro
edure is same as that in Platt's SMO pseudo-
ode.if (i1 == i2) return 0alph1 = Lagrange multiplier for i1y1 = target[i1℄F1 = f
a
he[i1℄s = y1*y2Compute L, Hif (L == H)return 0k11 = kernel(point[i1℄,point[i1℄)k12 = kernel(point[i1℄,point[i2℄)k22 = kernel(point[i2℄,point[i2℄)eta = 2*k12-k11-k22if (eta < 0) 21



{ a2 = alph2 - y2*(F1-F2)/etaif (a2 < L) a2 = Lelse if (a2 > H) a2 = H}else{ Lobj = obje
tive fun
tion at a2=LHobj = obje
tive fun
tion at a2=Hif (Lobj > Hobj+eps)a2 = Lelse if (Lobj < Hobj-eps)a2 = Helsea2 = alph2}if (|a2-alph2| < eps*(a2+alph2+eps))return 0a1 = alph1+s*(alph2-a2)Update weight ve
tor to refle
t 
hange in a1 & a2, if linear SVMUpdate f
a
he[i℄ for i in I_0 using new Lagrange multipliersStore a1 and a2 in the alpha array% The update below is simply a
hieved by keeping and updating information% about alpha_i being at 0, C or in between them. Using this together with% target[i℄ gives information as to whi
h index set i belongs.Update I_0, I_1, I_2, I_3 and I_4% Compute updated F values for i1 and i2...f
a
he[i1℄ = F1 + y1*(a1-alph1)*k11 + y2*(a2-alph2)*k12f
a
he[i2℄ = F2 + y1*(a1-alph1)*k12 + y2*(a2-alph2)*k22Compute (i_low, b_low) and (i_up, b_up) by applying equations (11a) and22



(11b), using only i1, i2 and indi
es in I_0; see item 3 of se
tion 5.return 1endpro
edurepro
edure examineExample(i2)y2 = target[i2℄alph2 = Lagrange multiplier for i2if (i2 is in I_0){ F2 = f
a
he[i2℄}else{ 
ompute F2 = F_i2 and set f
a
he[i2℄ = F2% Update (b_low, i_low) or (b_up,i_up) using (F2,i2)...if ((i2 is in I_1 or I_2) && (F2 < b_up) )b_up = F2, i_up = i2else if ((i2 is in I_3 or I_4) && (F2 > b_low) )b_low = F2, i_low = i2}% Che
k optimality using 
urrent b_low and b_up and, if% violated, find an index i1 to do joint optimization with i2...optimality = 1if (i2 is in I_0, I_1 or I_2){ if (b_low-F2 > 2*tol)optimality = 0, i1 = i_low}if (i2 is in I_0, I_3 or I_4){ 23



if (F2-b_up > 2*tol)optimality = 0, i1 = i_up}if (optimality == 1)return 0% For i2 in I_0 
hoose the better i1...if (i2 is in I_0){ if (b_low-F2 > F2-b_up)i1 = i_lowelsei1 = i_up}if takeStep(i1,i2)return 1elsereturn 0endpro
eduremain routine for Modifi
ation 1:initialize alpha array to all zeroinitialize b_up = -1, i_up to any one index of 
lass 1initialize b_low = 1, i_low to any one index of 
lass 2set f
a
he[i_low℄ = 1 and f
a
he[i_up℄ = -1numChanged = 0;examineAll = 1;while (numChanged > 0 | examineAll){ numChanged = 0;if (examineAll) 24



{ loop I over all training examplesnumChanged += examineExample(I)}else{ loop I over I_0numChanged += examineExample(I)% It is easy to 
he
k if optimality on I_0 is attained...if (bup > blow - 2*tol) at any Iexit the loop after setting numChanged = 0}if (examineAll == 1)examineAll = 0else if (numChanged == 0)examineAll = 1}
main routine for Modifi
ation 2:initialize alpha array to all zeroinitialize b_up = -1, i_up to any one index of 
lass 1initialize b_low = 1, i_low to any one index of 
lass 2set f
a
he[i_low℄ = 1 and f
a
he[i_up℄ = -1numChanged = 0;examineAll = 1;while (numChanged > 0 | examineAll){ numChanged = 0;if (examineAll) 25



{ loop I over all training examplesnumChanged += examineExample(I)}else% The following loop is the only differen
e between the two SMO% modifi
ations. Whereas, in modifi
ation 1, the inner loop sele
ts% i2 from I_0 sequentially, here i2 is always set to the 
urrent% i_low and i1 is set to the 
urrent i_up; 
learly, this 
orresponds% to 
hoosing the worst violating pair using members of I_0 and some% other indi
es.{ inner_loop_su

ess = 1;do until ( (bup > blow - 2*tol) | inner_loop_su

ess = 0 ){ i2 = i_lowy2 = target(i2)alph2 = Lagrange multiplier for i2F2 = f
a
he[i2℄i1 = i_upinner_loop_su

ess = takeStep(i_up,i_low)numChanged += inner_loop_su

ess}numChanged = 0}if (examineAll == 1)examineAll = 0else if (numChanged == 0)examineAll = 1} 26
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