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Abstract 

Human activity recognition enables ubiquitous computing applications to leverage 

knowledge of people's context. The ability to distinguish a small set of activities has 

already shown the capacity to enable a wide range of important applications that 

integrate with fitness/healthcare [1], environmental sustainability [2], and 

entertainment [5]. However, the state-of-the-art in activity recognition is custom 

hardware that can be expensive to build, difficult to maintain, and an additional item 

for people to wear or carry around. Mobile phones provide an opportunity to augment 

an existing device that people already carry with them throughout their daily lives. In 

our work, we have implemented an activity classification system on the Windows 

Mobile OS paired with the HTC Touch Diamond mobile phone. Our system uses a three-

axis accelerometer to classify human activities including running, walking, bicycling, 

and sitting. It achieves considerable accuracy and a day's battery life. 

 

Introduction / Motivations 

Computing is growing ever more ubiquitous and context-aware. Systems falling into this 

category are those that are capable of communicating among each other and that are 

readily aware of their surroundings, including any individuals that may be present within 

these surroundings. One example is a system that interprets an individual’s geographic 

location during call initiation and connects the line to the appropriate phone number 

(whether work, mobile, or landline) given personalized settings [3]. An important point to 

observe is that although we may have once considered phone communication and GPS as 

two distinct processes, this line of separation between these two processes is becoming 

increasingly blurred and information is becoming more readily accessible among many 

distributed devices. 

 

Human activity classification is an important advancement in these efforts. Such systems 

provide the capability to interpret a user’s activities with the use of sensors, which are 

commonly distributed as a set of several sensors of various types (accelerometer, pressure, 

GPS, RFID, etc). Undoubtedly, the future of intelligent computing will need to rely, at least 
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partially, on a system’s ability to correctly classify a user’s activity and surroundings. 

Consider a system that is capable of adjusting room lighting based solely on a user’s 

activities that it interprets – perhaps upon sitting at ones desk the light would center 

around the desk, upon sleeping the lights would turn off, upon waking up the lights would 

gradually turn on, and upon dancing the lights would begin to strobe with different colors. 

Once provided with the correct activity, such lighting operations could easily be set to 

perform in response to each of the activities just described. The means of detecting these 

activities (and ideally a much larger set of common activities), however, remains a difficult 

problem to tackle.  

 

A preliminary step in advancing such systems is considering a limited domain of possible 

activities, perhaps composed of only a couple distinct values. This is an area that has thus 

far seen much more success and, despite its domain-limited capabilities, it can be a part of 

many important applications when integrated with areas such as: fitness/healthcare where 

individuals are encouraged to engage in fitness activities [1], environmental sustainability 

where individuals are encouraged to reduce use of public transportation [2], as well as for 

entertainment purposes such as the Mario Fit application that allows gameplay based on 

physical activity in lieu of a handheld controller [4]. This lattermost application of 

entertainment can also be viewed as encouragement of the same fitness/health benefits 

due to its interactivity [5].  

 

Although certain custom hardware devices are made specifically for inferring activities, 

they are typically expensive to build, difficult to maintain, and an additional item for people 

to wear or carry around. It is thus no surprise that such efforts have not reached a 

widespread audience, despite their proven feasibility and obvious potential. Better 

hardware must be realized for activity inference that remedies the inadequacies of these 

custom-made devices. In the case of activity inference, and especially for long-term 

applications, it is further reasonable to consider a device that can at most times be assumed 

to be carried around by the user. As such, mobile phones appear to be a plausible solution 

for the choice of hardware. The internal accelerometer and GPS devices, which are 
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increasingly common as built-in features of these phones, appropriately provide a plausible 

means to infer activity. 

 

This paper discusses the implementation of real-time activity inference on the Windows 

Mobile platform using the HTC Touch Diamond mobile phone. Our system, which is based 

on similar findings and implementation on the iPhone [4], is capable of accurately 

classifying trained human activities, which can (as will be the case within this paper) 

consist of running, walking, sitting, and biking. Activity models are learned using a 

collection of features that are calculated based on samples from the 3-axis accelerometer. 

These models then serve as a means for recognizing new activities based on data that is 

collected in real-time. 

 

I will begin by discussing some background work that was the basis of our motivation and 

by addressing the closely related solution developed for the iPhone. I will then briefly 

overview the three stages of our approach, which include logging data, creating models, 

and classifying activities. Afterwards, I will discuss in greater detail our design choices and 

architecture, as well as some challenges we faced. I will then provide results and a 

discussion of the accuracy and robustness of our solution based on several experiments. 

Finally, I will briefly discuss some possible paths for future work. 

 

Background / Related Work 

As previously mentioned, activity inference systems that distinguish between a few 

discrete values have already been successful in the past, 

although with specialized hardware. A subset of these 

systems include the MSP belt-worn sensing device [6], 

the eWatch wrist device [7], and the Nike+iPod Sport Kit 

[8] seen respectively in Figures 1-3. All three systems 

mentioned here can classify activities similar to those 

which I propose within this paper – running, walking, 

standing, etc.  

Figure 1 
An attachable belt-worn sensor 

used as part of the MSP system 
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Although all of these systems support activity inference, they have done so with a 

dependence on custom-made hardware.  This is a problem because 

these devices are typically expensive to build and difficult to 

maintain. Perhaps more importantly, these are items that must be 

worn in addition to 

others that the user may 

be already wearing. In 

some cases this may also 

mean having to carry 

around a device that 

is awkward in 

appearance and/or placement.  

 

These limitations were recognized at the University of Washington and an effort to 

implement activity recognition on a mobile device was undertaken by T. Scott Saponas, 

Jonathan Lester, Jon Froehlich, James Fogarty, and James Landay. This effort was 

successfully implemented on the iPhone mobile device, making use of the device’s three-

axis accelerometer. Their goal was based on the idea that “utilizing commodity devices for 

activity inference provides researchers with access to robust, readily-available hardware 

and potentially large preexisting user bases” [4]. Furthermore, to reinforce this claim, they 

provided a set of open source tools for collecting, building, and running activity models that 

could be incorporated into future application development. 

 

As accelerometers become an increasingly popular component of mobile devices, it will be 

necessary to expand this idea to other platforms in addition to the iPhone. Although work 

is already being done to expand this idea to the Android platform, the issue has not yet 

been addressed for the Windows Mobile platform, which is used by many mobile devices 

on the market and is capable of supporting the very same activity inference techniques. In 

order to further pursue the objective of providing activity inference capabilities based on 

Figure 3 
The �ike+ iPod sensor is placed in a person’s 

shoe and communicates wireless to their iPod [9] 

Figure 2 
A sensor designed to 

appear like a common 

watch as used in the 

eWatch system [8] 



readily-available hardware and 

researchers, it will be necessary to port this 

 

Platform Overview 

The activity classification system

represents a major step in the entire

these three stages are based on the same design decision

the iPhone. I will briefly discuss each of the three phases below

specific design and architectural components 

the interface designs are purely for functional purposes and only demonstrate a

of the API that it is built upon; this point is 

 

Logger Component 

The logger component is used to collect data that 

used for training a model. This data is represented in the 

form of raw data and feature calculations

discussed in greater detail within the next section. This 

user interface, which is shown in 

of simple buttons that represent each of the possible 

activities that the model will be trained on. It should be 

noted that, although this particular interface contains 

only four distinct activities, there is certainly no 

limitation in using additional activities

different representation, such as drop

could be used in order to accommodate a larger set of activities.

 

Modeling Component 

The modeling component is used to transform the data collected from the logger into a 

model file that can be used for classification. 

features that are calculated based on 
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available hardware and to encourage a potential for even larger user bases 

s, it will be necessary to port this capability onto the Windows Mobile platform.

classification system consists of three separate phases, each of which 

entire process.  For sake of compatibility and consistency, 

these three stages are based on the same design decisions made by the prior initiative for 

I will briefly discuss each of the three phases below and save discussion of 

design and architectural components for the next section. It should be noted that 

the interface designs are purely for functional purposes and only demonstrate a

f the API that it is built upon; this point is further emphasized below. 

to collect data that is later 

This data is represented in the 

form of raw data and feature calculations, which are 

detail within the next section. This 

user interface, which is shown in Figure 4, consists of a set 

of simple buttons that represent each of the possible 

activities that the model will be trained on. It should be 

noted that, although this particular interface contains 

only four distinct activities, there is certainly no 

in using additional activities. Accordingly, a 

different representation, such as drop-down menus, 

could be used in order to accommodate a larger set of activities. 

is used to transform the data collected from the logger into a 

be used for classification. More specifically, it uses a collection of 72 

based on logger data to construct a Naïve Bayesian 

Figure 4

Our activity logger supports the few 

chosen activities shown above, 

however, support can easily be 

extended to other activities.
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user bases for 

onto the Windows Mobile platform. 

, each of which 

process.  For sake of compatibility and consistency, 

made by the prior initiative for 

discussion of 

t should be noted that 

the interface designs are purely for functional purposes and only demonstrate a simple use 

is used to transform the data collected from the logger into a 

collection of 72 

to construct a Naïve Bayesian classifier, 

Figure 4 
Our activity logger supports the few 

chosen activities shown above, 

however, support can easily be 

extended to other activities. 



which was the machine learning 

inexpensive and thus “allows a potentially large number of applications on a mobile phone 

to each classify among a different set of activit

the other two phases (logger and classifier)

and, thus, it does not run on the mobile device. 

from the iPhone initiative (called iModel)

component as it runs on a desktop and is 

is a Java application built on the Weka machine learning toolkit

models of data, it contains other 

validating that models built with data from several people correctly classify data from a 

new person” [4]. This hold-one

within the “Evaluation and Discus

 

Classification Component

The real-time classification component

reading raw sensor values and using 

from these raw values in conjunction with the 

constructed in the previous phase 

activity. The API is constructed such that applications 

can request event notifications when new activities are 

classified. The user interface of the application, seen in 

Figure 5, shows two separate fields for classification 

updates – one for instant updates and one for smooth 

updates. The instant updates represent each indiv

classification that is made, whereas the smooth updates 

represent the most common individual classification over an adjustable 

This smooth activity is optionally 

previous classifications by day 

was mentioned for the logger, the interface demonstrates 

the API offers but it is certainly not restricted to 
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learning algorithm of choice because it is computationally 

allows a potentially large number of applications on a mobile phone 

to each classify among a different set of activities simultaneously in real-time” 

(logger and classifier), the modeling phase is a desktop 

the mobile device. Because a similar modeling tool

(called iModel) [4], there was no need to re-define 

it runs on a desktop and is therefore compatible with our solution

built on the Weka machine learning toolkit. In addition to creating 

other features such as hold-one-out tests, which “

validating that models built with data from several people correctly classify data from a 

one-out test will be used to evaluate the accuracy of 

and Discussion” section of this paper. 

Component 

component is responsible for 

reading raw sensor values and using features calculated 

in conjunction with the model 

constructed in the previous phase to produce an inferred 

API is constructed such that applications 

t notifications when new activities are 

ed. The user interface of the application, seen in 

two separate fields for classification 

one for instant updates and one for smooth 

updates. The instant updates represent each individual 

classification that is made, whereas the smooth updates 

ndividual classification over an adjustable interval

activity is optionally uploaded to a web server that displays a history of 

 and constructs a visual graph, as shown in Figure 6

mentioned for the logger, the interface demonstrates the primary functionalities

tainly not restricted to the format shown in the figure

Figure 5

Smooth activities can also be 

calculated using several different 

update intervals, as shown above.
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it is computationally 

allows a potentially large number of applications on a mobile phone 

time” [4]. Unlike 

desktop application 

a similar modeling tool was built 

define this 

compatible with our solution. This tool 

. In addition to creating 

, which “are useful for 

validating that models built with data from several people correctly classify data from a 

used to evaluate the accuracy of our system 

interval of time. 

to a web server that displays a history of 

igure 6. Also, as 

functionalities that 

shown in the figure. Finally, 

Figure 5 
Smooth activities can also be 

calculated using several different 

update intervals, as shown above. 
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there are several 

additional parameters 

that can change the effects 

of activity classification; 

these variables (such as 

the smoothing factor, raw 

data re-use, etc.) are 

discussed in more depth 

within later sections. 

 

Design Considerations and Architecture 

To better present the inner workings of our system, I will first discuss in greater detail the 

input, output, and processes that are involved within the logger and classification 

components.  Secondly, I will discuss three significant challenges that arose in our 

transition to the Windows Mobile platform, including the (1) accelerometer usage and 

limitations, (2) feature calculation and activity extraction through P/Invoke methods, and 

(3) locking the screen and battery management. 

 

Logger Component - Revisited 

Our solution contains two individual loggers (the accelerometer and the GPS) and provides 

support for easy expansion to other sensors with the use of high-level abstract classes. 

These abstract classes are denoted as SensorLogger and PollingSensorLogger; the former is 

designed for implementations where an event notification from the device is expected 

when new data is available (as in the GPS device), while the latter includes a timer object to 

poll the device at some constant interval (as in the accelerometer device). Each logger 

operates on logger sensor events that are specific to that logger and that are used to 

require certain types of data that are specific to that sensor. This process will be made 

more concrete shortly. This sensor logger is abstracted from the high-level SensorEvent 

class and implemented by each sensor. 

 

Figure 6 
Data uploaded to the web server can be used in many ways, one 

of which includes creating a graph representation. 



The accelerometer logging components are 

which conform to the description 

sample obtained via a periodic timer, a new 

output buffer using the high-level 

the raw data values for each axis, the activity label indicated by the client, and a timestamp 

– this is shown in Figure 7. 

Because we want to also make 

available the features based on

this raw data, the 

AccelerometerLogger contains 

functionality to output a second 

file designated for feature 

computation results. This process 

AccelerometerLogger class. The format of this data, whose derivation and individual 

 

The GPS logging components, GpsLogger

the accelerometer. In particular, new data is sampled whenever an event is thrown (as 

opposed to using a periodic timer) and there is no feature computation that is used.

GpsEvent contains: latitudinal and longitudinal values, vertical and horizont

the sea-level altitude, the 

user-specified activity, and 

a timestamp – this is 

shown in Figure 9.  

 

Figure 8

For each entry there is a total of 72 features, a subset of 

which are shown above.
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The accelerometer logging components are AccelerometerLogger and AccelerometerEvent

conform to the description of the API just provided. With each new accelerometer 

odic timer, a new AccelerometerEvent is created and added to an 

level AddSensorEvent method. AccelerometerEvent

for each axis, the activity label indicated by the client, and a timestamp 

make 

based on 

a second 

process is implemented as a separate thread within the 

class. The format of this data, whose derivation and individual 

components are discuss

later, contains

extensive set of values; a 

portion of this output is 

shown in F

 

GpsLogger and GpsEvent, function in much of the same 

the accelerometer. In particular, new data is sampled whenever an event is thrown (as 

opposed to using a periodic timer) and there is no feature computation that is used.

contains: latitudinal and longitudinal values, vertical and horizont

Figure 7 
Raw values of the accelerometer are based on units of 

gravity (i.e., placing the device on a table 

magnitude of 1 for the up-and-down axis)

Figure 8 
For each entry there is a total of 72 features, a subset of 

which are shown above. 

Figure 9 

Raw GPS values are collected directly from the device, similar 

to the accelerometer, and calculation were necessary.
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AccelerometerEvent, 

With each new accelerometer 

is created and added to an 

AccelerometerEvent contains: 

for each axis, the activity label indicated by the client, and a timestamp 

ad within the 

class. The format of this data, whose derivation and individual 

components are discussed 

contains a fairly 

extensive set of values; a 

portion of this output is 

Figure 8.  

, function in much of the same way as 

the accelerometer. In particular, new data is sampled whenever an event is thrown (as 

opposed to using a periodic timer) and there is no feature computation that is used. The 

al DOP values, 

Raw values of the accelerometer are based on units of 

gravity (i.e., placing the device on a table top will show a 

down axis) 

collected directly from the device, similar 

to the accelerometer, and calculation were necessary. 



Classification Component

The classification procedure shares a similar hierarchical structure as the loggers

implements the SensorLogger and 

activities are being logged 

to file. The events that 

carry this classification 

data contain: a timestamp 

of the classification, 

specification of either 

instant or smooth activity 

type, the classified activity 

label, and the distribution 

(which is non-empty only for smooth classification) 

 

Unlike the logging tool, the classification tool contains several options that can alter how 

activities are classified. Firstly, it will be necessary to 

instant or smooth classification updates

classification that is made. Depending on the amount of data that is used per feature 

calculation (see later discussion within this section

different intervals. However, assuming the default settings of 128 data entries used per 

feature calculation and a 25 Hz accelerometer sampling rate, new instant activities are 

classified about every 5 seconds. 

 

Smooth activities, on the other 

within a collection of consecutive instant 

people do not change their activities every 5 seconds, but instead do

intervals of time. Therefore, it would appear that 

most practical purposes.  A benefit of smooth classification is that it is 

false classifications and can thus 

provides a smooth transition of activit
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Component - Revisited 

shares a similar hierarchical structure as the loggers

and SensorEvent abstract classes, except here 

for smooth classification) – this is shown in Figure 

Unlike the logging tool, the classification tool contains several options that can alter how 

, it will be necessary to readdress the distinction bet

classification updates. Instant updates represent each individual 

Depending on the amount of data that is used per feature 

discussion within this section), instant activities are update

ssuming the default settings of 128 data entries used per 

feature calculation and a 25 Hz accelerometer sampling rate, new instant activities are 

every 5 seconds.  

Smooth activities, on the other hand, consist of taking the activity with the majority 

a collection of consecutive instant activities. This idea is motivated by the fact that 

people do not change their activities every 5 seconds, but instead do so over

it would appear that smooth activities are more 

A benefit of smooth classification is that it is not hurt by 

thus provide better overall accuracy. Our approach also

provides a smooth transition of activities by using a half-blend technique where only the 

Figure 10 

The classification log file is very simple. For Smooth activities, as 

the one shown above, the distribution of instant activities is 

provided in the right-most field.
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shares a similar hierarchical structure as the loggers, in that it 

 the inferred 

igure 10.  

Unlike the logging tool, the classification tool contains several options that can alter how 

the distinction between 

Instant updates represent each individual 

Depending on the amount of data that is used per feature 

updated at 

ssuming the default settings of 128 data entries used per 

feature calculation and a 25 Hz accelerometer sampling rate, new instant activities are 

majority count 

This idea is motivated by the fact that 

over larger 

more applicable for 

not hurt by a few 

. Our approach also 

blend technique where only the 

The classification log file is very simple. For Smooth activities, as 

the distribution of instant activities is 

most field. 



Baghe r i  Ga r akan i  | 11 

first half of the collection set is removed after each classification (as opposed to the entire 

collection). A configurable option for smooth classification is the window size, the number 

of consecutive instant activities to consider. To illustrate this concept, the smallest window 

size represents each instant activity itself; on the other hand, a very large window size, say 

the length of one day, represents the most frequently occurring activity within the 

timeframe of the last 24 hours. 

 

One additional configuration option that pertains to both instant and smooth updates is the 

amount of accelerometer raw data re-usage through blending, which has the ability to 

encourage a higher rate of classification by some constant factor. Because the variable 

representing the amount of raw data per feature calculation must remain constant from the 

logging phase to the classification phase in order to maintain a consistent number of 

feature frequency values (as discussed later in this section), the only approach for 

increasing the classification rate is to re-use data in each FFT calculation. This allows the 

classification tool to compute features at a higher rate than the logger, if desired. To 

illustrate this point, assuming the default settings of 128 data entries used per feature 

calculation and a 25 Hz accelerometer sampling rate, new instant activities are updated 

every 5 seconds when using a data-reuse factor of 1 and every 2-3 seconds using a data-

reuse factor of 2. Accordingly, smooth classifications contain many more instant activities 

to consider and this has the potential to improve classification results.   

 

It should be mentioned that instant and smooth activities are both implemented in our 

approach by default. To make use of either (or both) activity types, it is only necessary to 

request notifications for each corresponding event. 

 

Accelerometer Usage and Limitations 

The built-in accelerometer of the mobile phone provided several challenges, including 

accessibility of the data and a limitation on the polling frequency. As is common for such 

devices in mobile environments, tools to access and control the accelerometer were not 

readily provided by the manufacturer. Luckily, as others too had encountered such 
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restrictions, there were many resources and workarounds available online. Based on work 

started by Scott Seligman and later expanded by Koushik Dutta [10, 11], the raw data 

values from the accelerometer could be accessed in C# or C/C++ by calling the native 

functions of the mobile device.  The second challenge was much more substantial. After 

experimenting with the device, it became clear that there was a 25 Hz limit on the 

frequency at which new values could be requested from the accelerometer. 

Experimentation showed that with higher requests values would begin to repeat for 

consecutive entries and at other times no entry would even exist. After several failed 

attempts to increase this limitation via different built-in C# polling techniques (e.g., using 

System.Timers.Timer, System.Threading.Timer, a combination of the DateTime structure & 

Thread.Sleep method, etc.), I considered the option of polling within unmanaged C++ code 

and then making some buffered collection of this data accessible to C# via P/Invoke 

methods.  This was motivated by the fact that crossing the boundary between managed and 

unmanaged code can have negative consequences on performance speed. Thus, it was 

hoped that higher polling frequencies could be achieved by crossing this boundary once for 

each collection of 120 data values (instead of once for each data value). The results of this 

approach, however, proved closely comparable with the 25 Hz limit. A final attempt was 

made by modifying various registry values of the device to attempt to achieve greater 

frequency. Despite locating some promising registry keys, there was no meaningful 

increase to the frequency limit after changes were made. 

 

The desire to exceed this limit was based on the 120 Hz polling frequency that was used on 

the iPhone implementation. Thus, it was understood that this would provide better results. 

It would turn out, however, that sampling at 25 Hz was sufficient for our needs. This 

sufficiency can be assessed within the ‘Evaluation and Discussion’ section of this paper, 

where we also compare with results from the iPhone implementation.  

 

Feature Calculation & Activity Extraction through P/Invoke 

Models learned within the second phase of our system are based on the accelerometer 

feature calculations. It should be noted, however, that our implementation is compatible 



Baghe r i  Ga r akan i  | 13 

with any feature choice, whether related to the accelerometer or not. Each feature 

computation is based on 128 raw accelerometer entries, by default. For each calculation, 

we identified 24 distinct features per axis, for a total of 72 features. For each axis, features 

can be categorized into two categories – magnitude features and frequency features. The 

former consists of 5 features and includes the mean, standard deviation, minimum value, 

maximum value, and max-minus-min value. The latter consists of 19 features and is the 

result of computing a 256 point Discrete Fourier Transform (DFT), which includes “one 

feature for the energy in each of the first 10 frequency components, a feature for the energy 

in each band of 10 frequency components, the value of the largest frequency component, 

and the index of the largest frequency component” [4]. These DFT values are capable of 

showing the periodic sensor changes that occur when performing activities, and it makes 

this information explicit by converting its representation from the time domain to the 

frequency domain. Figure 8 shows a glimpse of this combination of both feature types 

together within a log file. Finally, activity extraction is based on the Naïve Bayes model that 

is created in the modeling phase in conjunction with the real-time feature calculations that 

are made during the classification phase. 

 

Feature choice and methods for calculating them, as well as activity extraction techniques, 

are not platform-specific concepts and are thus taken directly from the solution for the 

iPhone. As such, it was not necessary to reconsider or re-implement these components. 

Because feature calculation and activity extraction are based on C/C++ code, however, it 

was necessary to export this functionality for use within our C# environment.  As such, it 

was necessary to call native code (C/C++) from managed code (C#), which means using 

P/Invoke (Platform Invocation Services) techniques in C# to call unmanaged DLL files 

compiled in C/C++. This, however, is a lot easier said than done. While there are endless 

resources and examples online, there are many limitations to the types of data that can 

cross this boundary. Different workarounds were needed in each particular instance. For 

example, if we wanted to access a global variable within native code, these variables along 

with any needed functions had to be encapsulated within a DLL-exported C++ class. 

Additionally, this required DLL-exported C++ methods to return a pointer to a new 

instance of the class, to call specific class methods when given a class pointer, and to return 
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the content of any global variables when given a class pointer. Essentially, within C# a 

pointer to a particular instantiation of the C++ class is used whenever referencing the 

native object’s methods or variables – this technique was used for activity inference (see 

project libClassify). In another case, P/Invoke was necessary to access the C/C++ KissFFT 

library, which was used for calculating the frequency features (see project libKissFFT).  

 

Locking Screen and Battery Management 

It was known from the beginning that locking the screen would be necessary for these 

mobile-based applications – both for the logging tool and the classification tool. After 

experimentation it became clear that some period of time after locking the device (either 

explicitly via the pressing the power button or after some time of inactivity), Pocket PCs 

(which our particular device is) will transition into a system state that disables access to 

the accelerometer device and does not allow certain applications to run in the background. 

Based on previous work by Jon Froehlich and various other resources online, it became 

clear that the proper solution to keeping this device and our application available was to 

periodically call SystemIdleTimerReset, a windows native function to explicitly reset the 

timer that is used to notify the system when to transition into a suspended state. 

Furthermore, to insure that the internal accelerometer device is kept active for the 

duration it is needed, the native function SetPowerRequirement was used to explicitly 

indicate this device and to set the desired ON power setting associated with it. 

 

Although the accelerometer device was now accessible to the application the entire time, a 

new problem had emerged; the device was constantly in a state that kept the device screen 

powered on (though it should be noted that this is different from the back light, which 

would automatically turn off). This had two negative consequences; firstly, this would 

mean the device screen would also be unlocked and thus the client could not safely put the 

device within their pockets; secondly, this system state would certainly drain the battery 

power quickly and reduce the applicability of this solution as a whole. To solve this 

problem, native function SetSystemPowerState was used to instruct the device to transition 

into the more appropriate UNATTENDED state (as opposed to SUSPENDED state), which 



allows applications and devices to run in the background with the screen off and locked. 

Figure 11 gives a more detailed descri

state is forced when either it is 

instructed to do so by the UI 

via the “Display Off” button or 

some specified time after 

transitioning to the 

BACKLIGHTOFF state.  

 

The outcome of having both 

these solutions simultaneously 

is as desired. Calling 

SystemIdleTimerReset and 

SetPowerRequirement will 

ensure the accelerometer 

device is active for the entire 

duration of the application. 

When the screen is inactive, 

the back light will 

automatically turn off and 

within the next 10 seconds (by default)

UNATTENDED state – this situation can be closely compared to the normal situation wh

the device enters SUSPENDED state after some time of inactivity, except here it instead 

transitions to the more useful UNATTENDED state. 

client has explicitly requested the device screen to be turned off

up this very same process. The ‘Display Off’ icon can be 

instance. 
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allows applications and devices to run in the background with the screen off and locked. 

gives a more detailed description of each system state [11]. This system power 

when either it is 

these solutions simultaneously 

10 seconds (by default) this will trigger a force of the device into 

this situation can be closely compared to the normal situation wh

SUSPENDED state after some time of inactivity, except here it instead 

UNATTENDED state. Another trigger for this can be when

client has explicitly requested the device screen to be turned off, which essentially speeds 

up this very same process. The ‘Display Off’ icon can be seen at the bottom of Figure 4, for 

Figure 11 
Pocket PCs (which our device was) transition between various 

device power states. In our solution, we had to avoid 

transitioning to the ‘Suspended’ state, as shown above.
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This system power 

he device into 

this situation can be closely compared to the normal situation where 

SUSPENDED state after some time of inactivity, except here it instead 

can be when the 

, which essentially speeds 

seen at the bottom of Figure 4, for 

device was) transition between various 

device power states. In our solution, we had to avoid 

transitioning to the ‘Suspended’ state, as shown above. 



Evaluation and Discussion

To assess whether this solution was applicable to 

classification, we conducted two experiments 

and the other pertaining to its accuracy and performance.

 

Robustness Experiment 

For the robustness experiment 

classification update intervals in an attempt to evaluate 

to the web server. These components were measured by referring to two log files at the 

end of each trial – the classification log file (shown in Figure 

file (shown in Figure 12). This latter file was 

specifically added to measure the number of 

connection attempts that were successful over 

the total number attempted. The

file is simple; it contains: a timestamp, the 

type of activity that is uploaded

smooth), and an indication of either success 

or failure.  

 

Each trial was conducted with the battery being completely charged. The battery life was 

measured by looking at the start and end times of the classification log file, and the 

connectivity was measure by considering the percentage of successful 

web server. The connectivity of the system was perfect in three of the four 

server updates enabled; one trial 

connectivity (14 failures among 168 attempts), however, this was due to 

area with little or no cellular reception. As such, it appears connectivity is reliable as long 

as cellular service is available. Within the ‘Future Work’ section we evaluate some 

extensions to improve this percentage 
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Discussion 

whether this solution was applicable to the initial goals we set for activity 

classification, we conducted two experiments – one pertaining to the solution’s robustness

and the other pertaining to its accuracy and performance. 

robustness experiment several trials were conducted using different activity 

in an attempt to evaluate the battery life and 

to the web server. These components were measured by referring to two log files at the 

the classification log file (shown in Figure 10) and the connectiv

This latter file was 

specifically added to measure the number of 

connection attempts that were successful over 

The format of this 

is simple; it contains: a timestamp, the 

uploaded (instant or 

smooth), and an indication of either success 

was conducted with the battery being completely charged. The battery life was 

measured by looking at the start and end times of the classification log file, and the 

connectivity was measure by considering the percentage of successful transmissions

The connectivity of the system was perfect in three of the four trials

server updates enabled; one trial with 5 minute smoothing updates experienced

connectivity (14 failures among 168 attempts), however, this was due to walk

area with little or no cellular reception. As such, it appears connectivity is reliable as long 

as cellular service is available. Within the ‘Future Work’ section we evaluate some 

extensions to improve this percentage within these limited service areas.  

Figure 12 
The connectivity log file indicates whether 

application could upload to the web server at 

the specified timestamp.
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set for activity 

solution’s robustness 

were conducted using different activity 

 the connectivity 

to the web server. These components were measured by referring to two log files at the 

) and the connectivity log 

was conducted with the battery being completely charged. The battery life was 

measured by looking at the start and end times of the classification log file, and the 

transmissions to the 

trials that had 

experienced about 92% 

walking within an 

area with little or no cellular reception. As such, it appears connectivity is reliable as long 

as cellular service is available. Within the ‘Future Work’ section we evaluate some easy 

 
The connectivity log file indicates whether the 

could upload to the web server at 

timestamp. 
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As for the issue of battery life, Figure 13 illustrates the effect on battery life using the 

following smooth upload intervals: 3 seconds, 1 minute, 2 minutes, and 5 minutes. This 

range of values provides a good lower and upper bound on what is practical for most 

activity inference applications. Table 1 shows a slightly different aspect of battery life; it 

illustrates the effect on battery life under different connectivity environments. These 

experiments were done to analyze whether successful or failed connections change the 

overall usage of battery, where upload rate was kept the same at 5 minutes. Finally, results 

are also shown from an experiment where uploads were disabled as a whole. 
 

 

Figure 13 

Illustrates results from four experiments to evaluate battery life using various upload rates. 

 

Battery Life Under Various Connectivity Environments 

Experiment Connectivity Environment Battery Life (Hours) 

1 Perfectly Successful Uploads 16 

2 Perfectly Failed Uploads (airplane mode) 20.75 

3 Disabled Uploads 23.5 

Table 1 

When avoiding connection attempts, either due to internet unavailability or disabling updates to 

the web server, there is a considerable improvement in battery life, as the data above illustrates. 
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The data from Figure 11 shows that with a small upload interval (and therefore a large 

number of attempted uploads), battery life is depleted relatively quickly. In fact, it is pretty 

safe to say that 6 hours is too short of a battery life for most purposes. Updating every 5 

minutes, on the other hand, results in almost three times the battery performance. Data 

from Table 1 reinforces this hypothesis as it shows that when the phone modem is disabled 

(airplane mode), causing all updates to result in a failure, there is a 30% increase in battery 

life. Better yet, when uploads are disabled completely (and thus never attempted in the 

application) there is a 47% increase from the original 16 hours to nearly 24 hours. The 

current performance of the battery life appears practical for most applications. Without 

focusing too greatly on battery types and phone-specific details, these results currently 

outperform those of the iPhone and Android mobile platforms, which run at 6 hours and 10 

hours under normal conditions, respectively.  

 

As reference, in one experiment with the screen lock and the battery management settings 

in effect but without the classification application running on the phone, battery life expired 

after 7 days. This result, being nearly 6 days longer than when the application was running 

with uploads disabled, shows the enormous effect on battery life from repeatedly sampling 

the accelerometer at 25 Hz. In the ‘Future Work’, however, I will discuss some ways to 

optimize battery use even further. 

 

Classification Accuracy Experiment 

To evaluate the accuracy of our system, data was collected from 5 male and female 

students between the ages of 18 – 22. Data was collected for each individual while the 

participant performed approximately 3 minutes each of the following activities: walking, 

jogging, bicycling on a stationary bike, and sitting. Cross-validation tests were performed 

where for each participant we conducted a hold-one-out test. Table 2 shows a confusion 

matrix that combines the hold-one-out tests of all participants. 
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Confusion Matrix from Hold-One-Out Test Results 

 
Classified As 

Biking Running Sitting Walking 

Ground 

Truth 

Biking 122 0 2 14 

Running 0 152 0 1 

Sitting 4 0 121 0 

Walking 30 17 0 103 

Table 2 

The diagonal with the largest values illustrate that classification accuracy was relatively 

high. Misclassifications did occur within our data, however, most commonly between 

Biking and Walking. 

 

This data makes transparent the frequency at which two activities were ‘confused’ during 

the cross-validation testing. In particular, the activity of Biking and Walking were often 

misclassified as one when it really was the other – in fact, this occurred in nearly 15% of 

our data. On the other hand, correct classifications (represented by the diagonal where 

each activity meets itself) were made in about 88% of our data. Table 3 illustrates the 

percentage of correct classifications for each individual participant when validated with the 

model built from data gathered among all other participants. 

 

Percentage of Correct Classifications for Each Participant 

 Percentage (%) 

Participant 1 99.2 

Participant 2 93.0 

Participant 3 65.6 

Participant 4 97.5 

Participant 5 79.5 

Table 3 

Hold-one-out tests conclude that data from Participant 3 was substantially different from the 

other participants, while Participant 1 experienced nearly perfect validation. 
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This data reveals some important information from our experiment. In particular, it 

appears that much of our misclassification was related to the data from the third 

participant. Without the ability to extensively review this circumstance, one would predict 

that this is because the data was either erroneously logged during this trial or simply that 

the model based on the other four individuals was not a complete-enough description of 

the activities. Consequently, in order to improve overall accuracy, one would be 

encouraged to re-evaluate these percentages after incorporating an additional set of 

participants and/or performing a more controlled experiment that requires participants to 

follow designated routes and wear particular types of clothing to regulate how the device is 

held in the pocket. The accuracy results for the iPhone solution, which implemented 

stricter control in their experiments similar to those just described, achieved nearly perfect 

classification accuracy and, thus, serves as a good model to follow for subsequent rounds of 

experimentation. 

 

Because we could not overcome the 25 Hz accelerometer polling frequency in our design 

and were thus concerned with how this would affect our results, our accuracy results were 

quiet pleasing to discover. Although we will make some suggestions for the accelerometer 

in the ‘Future Work’ section, it does not appear necessary to modify use of the 

accelerometer to achieve better classification. There remain several of options to tweak 

and to consider: better machine learning, better choice of features, etc. Therefore, based on 

the results of our experiment, it does not appear that the accelerometer polling frequency 

is necessarily the sole difficulty that needs to be solved in order to increase accuracy 

results.  Our results in general were quite pleasing given that this was only our first 

implementation. We discuss some future work for our solution in the next section. 

 

Future Work  

Though we have successfully implemented activity classification on our mobile phone, 

there is certainly much more work that can be done. Some of these ideas arose throughout 

the course of our design and could not be addressed due to lack of time, while others arose 

after considering our evaluation results as discussed above. 
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One idea is to sleep the device during time when activity can be inferred as constant. This is 

based on the idea that people do not change activities every 5 seconds, but takes this idea 

even further to say that sometimes (though not always) people will not change their 

activity for hours. With this said, consider when a person has been sitting for a few hours; if 

we can detect that there is no change taking place, we can gradually reduce the frequency 

at which computations are being made (i.e., reduce accelerometer sampling rate, etc.). This 

solution seems feasible since we can use the smoothing window to determine the accuracy 

at which an activity is classified each time. If an activity is classified with a high percentage 

(perhaps even on a few successive iterations of smooth updates), then we could possible 

detract from regular sampling. We could expect perhaps a small tradeoff in accuracy for a 

large increase in battery life. 

 

Another important task for future work is considering how our solution performs on other 

Windows Mobile phones, since we only tested with the HTC Touch Diamond. On a similar 

note, it would be also worthwhile to experiment with the upcoming Windows Mobile 7 

operating system. These two items will be necessary to assure we have addressed the issue 

for a range of potential Windows Mobile devices. 

 

Finally, there are a number of improvements that were brought to our attention after our 

evaluation experiments. One idea is re-tackle the effort to improve the accelerometer 

sampling rate. While, as we concluded before, this is not necessary an essential step needed 

to improve performance, it is nonetheless worthwhile to evaluate changes in performance 

using higher frequencies. Connectivity too could be expanded such that it does not suffer 

within areas that do not have strong cell service. Using the wireless capabilities of the 

phone, if present, we can ensure a better overall connectivity percentage. 

 

Conclusion 

Activity inference has many important applications and is already being integrated in many 

different fields. For the class of problems that distinguish between a few different activities, 
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systems often suffer from various downfalls that accompany use of custom-made 

hardware. Using mobile phones as the answer to this hardware question allows developers 

interested in this technology, including researchers at universities or elsewhere, to readily 

have access to activity inference functionality. Taking a step towards achieving this goal, 

our solution contains a carefully structured and clearly commented API that allows for 

flexibility throughout each of the three steps of our system – collecting data, creating 

models, and classifying activities. Our results were favorable, especially for being our first 

implementation. Still, as the next step there are certainly many improvements that can be 

made as well as extensions (perhaps to additional sensors) to further increase functionality 

and make our system applicable to an even larger scope of applications. 
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