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ABSTRACT
The UW Dynamic Social Network study is an effort to automatically
observe and model the creation and evolution of a social network
formed through spontaneous face-to-face conversations. We have
collected more than 4,400 hours of data that capture the real world
interactions between 24 subjects over a period of 9 months. The data
was recorded in completely unconstrained and natural conditions,
but was collected in a manner that protects the privacy of both study
participants and non-participants. Despite the privacy constraints,
the data allows for many different types of inference that are in turn
useful for studying the prosodic and paralinguistic features of truly
spontaneous speech across many subjects and over an extended pe-
riod of time. This paper describes the new challenges and opportuni-
ties presented in such a study, our data collection effort, the problems
we encountered, and the resulting corpus.

Index Terms— Data acquisition, privacy, speech analysis, oral
communication

1. INTRODUCTION

The dynamic social network study is an effort to extend traditional
social network analysis with automatically collected longitudinal data
(data repeatedly collected from the same population over an extended
period of time) about real-world interactions. While automatically
collected longitudinal data has been used to study virtual interactions
[1], few studies have attempted the same in the real-world—despite
the fact that face-to-face communication is still people’s dominant
mode of interaction [2]. To this end, we instrumented a subject pop-
ulation with wearable sensors that recorded them as they went about
their lives over the course of 9 months. Since this data contains truly
spontaneous speech recorded in situ, we believe this project presents
exciting new avenues for speech research.

To date, much of the speech research in modeling conversations
has been done on data in meeting room scenarios [3, 4] or with acted
speech [5] (which is known to poorly reflect natural emotion [6]).
The data sets that do capture real emotion (e.g. [7, 8, 9]) are gener-
ally limited to a handful of observations of each subject and cannot
be used to compare one person’s speech across different situations
or over time. Most are also recorded in relatively unnatural settings
(television shows, interviews) that are not representative of ordinary
human communication. We have found only one other attempt at
collecting data in settings as spontaneous as ours [10], but it only
recorded single participants in isolation (i.e. only one side of a con-
versation) and it does not seem to have continued beyond an initial
piecemeal gathering of 250 hours of data.

But the largest problem by far with all of the work we have found
is that it all assumes access to raw audio recordings. Collecting truly
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spontaneous speech requires recording people in unconstrained and
unpredictable situations, both public and private. There is little con-
trol over who or what may be recorded. Uninvolved parties could
be recorded without their consent—a scenario that, if raw audio is
involved, is always unethical and often illegal. Thus, assuming ac-
cess to raw audio is impractical for most real-world situations and
stands in the way of collecting truly natural data. Recording sponta-
neous data in real-world situations will require protecting the privacy
of those involved by not always storing complete audio. While that
limits the analyses that can be done on the data, it does not render
it useless. A broad range of inferences can be made from privacy-
sensitive features. It is also easier to gather far larger amounts of
privacy-sensitive data than it is to gather raw audio (which is perhaps
a fundamental trade-off between quantity and quality when collect-
ing spontaneous speech data).

In the remainder of the paper we discuss our data collection
method, our privacy-sensitive features and how those features can
be used, the data we collected, and some problems we encountered
along the way.

2. DATA COLLECTION METHOD

The 24 subjects in our study were recruited from the incoming class
of the graduate program of a single department at a large research
university. To collect data each subject wore an HP iPAQ hx4700
Personal Digital Assistant (PDA) with an attached multi-sensor board
(MSB) containing 8 different sensors. The PDA was carried in a
small over-the-shoulder bag and the MSB was connected to the PDA
via a USB cable that ran discreetly down the bag’s strap (Figures
1(a) and 1(b)). The MSB was worn on the front of the wearer’s
shoulder, similar in placement to a lapel microphone (Figure 1(c)).
For long-term usability, a close-talking microphone was not appro-
priate. Recording could be started and stopped with the press of a
single hardware button on the side of the PDA and the screen pro-
vided simple feedback to show whether the device was recording
(Figure 1(d)). The PDA has an Intel XScale PXA270 624 MHz pro-
cessor, with no FPU, and 64 MB of RAM. All data was saved to a
2 GB Secure Digital flash memory card in half hour chunks. Of the
8 sensors on the MSB, for conversation detection, the most impor-
tant sensor is clearly the microphone. The MSB’s microphone is an
inexpensive electret condenser microphone that records 16 bit audio
at a rate of 15,360 Hz. The raw audio was not recorded, but a set
of privacy-sensitive features that preserve information about conver-
sation style and dynamics (described in Section 2.1) were computed
and saved on the PDA.

The MSB also contains 7 other sensors that sample at varying
rates: triaxial accelerometer (550 Hz), visible light (550 Hz), digital
compass (30 Hz), temperature and barometric pressure (15 Hz), in-
frared light (5 Hz), and humidity (2 Hz). These sensors can be used



(a) Front: MSB is on right shoulder (b) Back: PDA is in bag. (c) MSB. Microphone is at top. (d) PDA and data collection program.
Fig. 1: The data collection kit worn by each subject.

to infer the wearer’s physical activity (e.g. walking, sitting, standing,
etc.) and whether she is indoors or outside [11]. In addition to the
data gathered via the MSB, the PDA records (at 0.5 Hz) the MAC
addresses and signal strengths of the 32 strongest WiFi access points
nearby. This WiFi data can be used to determine the wearer’s loca-
tion [12]. Unlike audio, the raw data from the additional sensors and
the WiFi readings are saved in their entirety with no initial feature
processing.

Data was collected during working hours for one week each
month over the 9 month course of an academic year. The first week
had only 3 working days and the last only 4, for a total of 42 collec-
tion days. Aside from the days and hours, no other restrictions were
placed on data collection. The subjects recorded data everywhere
they went, inside and out: class, lunch, study groups, meetings,
spontaneous social gatherings, etc. Subjects were asked to upload
their collected data at the end of each collection day, but because
their memory cards could hold an entire week of data most waited
until the end of the week. The subjects were paid for each day of
data that they submitted. They were also allowed to use the PDA
during non-collection weeks and were given the PDA at the end of
the study.

At the end of every collection week each subject filled out a sur-
vey. The survey asked 5 questions: (1) which other participants the
subject interacted with over the previous month and how (e.g. home-
work collaboration, research collaboration, socially, etc.), (2) which
5 non-participant students within the same department the subject
interacted with and how, (3) which sub-areas of the discipline the
subject was interested in pursuing, (4) which faculty members the
subject was interested in collaborating with, and (5) which faculty
members the subject had collaborated with. Once each term, the
survey also asked which classes the subject was taking, how she was
funded, and whom she considered her advisor. An initial survey ad-
ministered on the first day of data collection asked questions about
the subject’s previous interactions with anyone in the department.

2.1. Privacy-Preserving Audio Features
For our data we devised a feature set that would preserve enough
information to allow us to infer when conversations occur between
study participants and also include enough prosodic and paralinguis-
tic features to allow us to infer conversation types and speaker states.
To protect the privacy of anyone who comes within the range of the
microphone, however, we must ensure that the acoustic information
that is saved cannot be used to reconstruct intelligible speech. A fur-
ther challenge that constrains our feature set is that all features must
be computed in real-time (no raw audio can ever be stored, even

temporarily) within the limited computational resources of the PDA.
To ensure that we cannot reconstruct content, the features we

record do not include formant information. At the same time, they
preserve the ability to infer when and how a person is speaking,
and—if the speaker is one of our subjects—which person is speak-
ing. We believe that this is possible using an approach based on
detecting regions of audio that contain speech—and voiced speech
in particular. Since our data can be recorded in widely varying noise
situations, it is important that our features are robust to noise. Mean
and variance of spectral entropy have been shown to be a good fea-
tures for distinguishing speech from non-speech in noisy conditions
[13]. Additional features that have been shown to be useful in ro-
bustly detecting voiced speech under varying noise conditions are:
(1) non-initial maximum autocorrelation peak, (2) the total number
of autocorrelation peaks, and (3) relative spectral entropy [14].

To compute these features, we use 33.33 ms frames (512 sam-
ples) with overlaps of 16.67 ms (256 samples). For each frame, we
first compute its power spectrum and total energy. We normalize the
power spectrum to a distribution by dividing by the total energy and
use that distribution to compute spectral entropy. Relative spectral
entropy is computed between the normalized spectrum of the current
frame and a normalized running average of the power spectra of the
last 500 frames (8,335 ms).

When using autocorrelation peaks to detect voiced speech, nar-
row spectrum noise (e.g. air conditioning, hard drives, etc.) can
cause confusion because it also creates strong autocorrelation peaks.
Fortunately, such noise is usually low energy (compared to voiced
speech) and its autocorrelation can be disrupted by adding low en-
ergy white noise to the signal. To that end, we uniformly whiten the
power spectrum with additional energy equal to 1% of the maximum
energy possible per frame, and then compute the autocorrelation in
the frequency domain. Logarithms (required for entropy) are im-
practical given the PDA’s limited processing power. However, the
PDA’s comparatively large amount of RAM allows us to instead use
a lookup table pre-populated with logarithms for all 16 bit values.

Summarizing, the complete list of acoustic features we compute
and save are: (1) spectral entropy, (2) relative spectral entropy, (3)
non-initial maximum autocorrelation peak (both its value and lag),
(4) the total number of auto-correlation peaks, and (5) energy.

2.2. Types of Inference
While the set of features may sound limited, it still allows a broad
range of inference. Mean and variance of spectral entropy can be
used to find spoken regions [13]. Relative spectral entropy and auto-
correlation peaks can be used to find voiced regions [14] and spoken



regions [15]. And we have had promising early results using only en-
ergy for speaker diarization (inferring who is speaking when) [16].
From the autocorrelation peaks we can infer pitch [17], and pitch
and energy are the two features most commonly used to infer emo-
tion from speech [18].

Knowing who is speaking when, with what energy, and at what
pitch is enough to enable many classes of dialog understanding. In-
terruptions and speaking time reveal information about status and
dominance [19]. Speaking rate reveals information about a speaker’s
level of mental activity [20]. Energy can reveal a person or group’s
interest in the conversation [21]. Pitch alone has a long history as a
fundamental feature for inferring emotion [22], and energy and du-
ration of voiced and unvoiced regions are also informative emotional
features [23].

2.3. Ground Truth

The above inferences can be separated into two classes: low level
speaker diarization and conversation detection, and higher level in-
ference of emotion, interest, social role and status, etc. To support
work on the first class of low level inference, we have gathered a
smaller development set of data (on the order of hours) with the
raw audio preserved. This data has been labeled with the ground
truth of who was speaking when, and who was in conversation with
whom. These labels can be used to test the accuracy of any speaker-
independent diarization or conversation detection algorithms that are
to be used on the larger, unlabeled data set.

Ground truth for the second class of higher level inferences is
more difficult to collect. Since capturing spontaneous conversations
under the given privacy-constraints requires recording many hours
of data without access to the raw audio, it is infeasible to label even
a subset of the data after its collection. Nevertheless, we do have
coarse ground truth from the survey data that we collected. We know
the subjects’ self-reported interactions and how they categorize those
interactions. That information can be used to guide analysis of the
acoustic data.

To be sure, this is not a corpus amenable to traditional research
that classifies utterances and evaluates according to correspondence
with ground truth (e.g. speech recognition). This is a corpus for
studying broad questions about prosody in a large amount of sponta-
neous speech, for example: Does prosody vary with social relation-
ship? Does prosody change over time, and is that change correlated
with a change in relationship? Can conversations be clustered ac-
cording to prosody? Is there a correlation between those clusters
and conversation location? In general, this data set will lend itself
more to such unsupervised inference and exploratory analysis. As
suggested by [5], such analysis in turn can enable the bootstrapping
of new corpora that mix the prosodic features of truly spontaneous
speech with less spontaneous acted data.

3. RESULTING DATA

Our subjects gathered a total of 4,469.48 hours—186.23 days—of
data. The amount of data collected per participant varied greatly,
from a maximum of 321.64 hours to a minimum of 88.78 hours. On
average, each participant recorded 4.43 hours of data per collection
day (max: 7.66, min: 2.11). The amount of data recorded also var-
ied over the course of the study. Figure 2(a) shows the average hours
collected per day for each collection week, averaged over all sub-
jects. For Figure 2(b), subjects were ranked into quartiles according
to how much data each subject submitted for the entire year. The
average number of hours recorded per day was then computed for
each quartile.
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(a) Average over all subjects. Error bars show standard deviation.
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(b) Average over subjects ranked in quartiles by total amount of data
submitted.

Fig. 2: Average hours of data collected per day per subject.

The first three weeks show an increase in the amount of data
collected as the subjects became more comfortable with the device
and its use, and battery life was improved (see Section 3.1). We be-
lieve that collected amounts decrease in weeks 4 through 6 as the
participants become fatigued and the study becomes less novel. This
decline is more pronounced in the subjects who submitted less data
overall. (The sharp drop in data collected by the top quartile at week
6 is due to one subject not being able to collect data that week. With
that anomaly removed the top quartile’s mean for week 6 rises from
5.18 to 6.21, making the overall trend more stable.) Before weeks 7
and 9 we sent additional messages of encouragement to the cohort,
and those may be responsible for the subsequent upturns in collec-
tion amounts.

Since subjects were only asked to record data during what each
considered his working day, and since different graduate students
keep very different hours, we worried about overlap in recording
times. A few subjects started their days much earlier than others
and spot checks of their data suggested that their PDAs’ batteries
were dying at the time that most of the cohort was together. To
counter this, we asked that no subject begin recording any earlier
than 10 a.m. for the last 3 collection weeks. Figure 3 shows the av-
erage number of simultaneous recordings at each collected second
for each collection week. From this it appears that changing the col-
lection method did not effect the amount of overlap in the data. In-
deed, overlap is strongly correlated with the amount of data collected
(r2 = 0.69, p = 0.006) more than it seems to be influenced by strict
collection hours. While there is no moment when all subjects are
recording (the maximum number of simultaneous recordings is 21),
there is enough overlap in the data for it to contain many possible
conversations. The average number of simultaneous recordings per
second is 8.133 for the entire corpus, and 88.32% of all recorded
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Fig. 3: Average number of subjects recording simultaneously at each
collection second. Error bars show standard deviation.

seconds are covered by at least two recordings. Additionally, there
is overlapping data for all pairs of subjects.

3.1. Problems Encountered

We encountered four significant problems during data collection. (1)
Batteries died faster than anticipated. We discovered that the oper-
ating system was attempting to connect to known WiFi networks in
weak signal conditions that we had not previously tested. We al-
leviated this problem by reconfiguring the OS to never attempt to
connect to any network while the data collection application was
running. (2) All of the PDA’s software and settings are stored in
volatile RAM and are completely lost if the battery fully discharges.
Subjects found it easy to recharge their PDAs at the end of each col-
lection day, but would often forget to charge them between collection
weeks. This led to many Monday mornings of lost recording time
while PDAs were reconfigured. (3) The PDAs’ clocks are shock-
ingly unreliable. We found them to drift up to 5 minutes between col-
lection weeks, thus needing frequent resynchronization with a time
server—which required periodically re-enabling the WiFi connec-
tion. (4) The cable that connected the MSB to the PDA’s USB card
was not durable enough for many weeks of continuous use. Over
time, the cable would become loose, and the PDA would intermit-
tently lose its connection to the MSB.

Each of these problems ultimately arises from our stretching the
PDA well beyond its intended use. It is meant to be turned on only
sporadically for short tasks, not to run continuously as its user goes
about her day. The PDA is also intended to be attached to a computer
regularly, providing it with the opportunity to charge its battery and
synchronize its clock. While PDAs are handy portable platforms for
short data collection efforts, we conclude that they are not suitable
to long term collection efforts such as ours.

4. CONCLUSION

Our longitudinal data collection effort resulted in a corpus of over
4,400 hours of spontaneous interaction data among 24 subjects, sam-
pled monthly over the course of 9 months. The recordings contain
a set of acoustic features which preserve information about voic-
ing and prosody that is useful in analyzing conversational dynamics,
style, and emotional content, but cannot be used to reconstruct intel-
ligible speech. In addition to the acoustic features, the dataset con-
tains the raw sensor data from the seven other sensors on the MSB,
and MAC addresses and signal strength of the WiFi access points
near the user. After additional privacy reviews, we plan to freely
share this data with the broader research community.
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