
Abstract 

Accurate recognition and tracking of human 
activities is an important goal of ubiquitous 
computing. Recent advances in the development of 
multi-modal wearable sensors enable us to gather 
rich datasets of human activities. However, the 
problem of automatically identifying the most 
useful features for modeling such activities remains 
largely unsolved. In this paper we present a hybrid 
approach to recognizing activities, which combines 
boosting to discriminatively select useful features 
and learn an ensemble of static classifiers to 
recognize different activities, with hidden Markov 
models (HMMs) to capture the temporal 
regularities and smoothness of activities. We tested 
the activity recognition system using over 12 hours 
of wearable-sensor data collected by volunteers in 
natural unconstrained environments. The models 
succeeded in identifying a small set of maximally 
informative features, and were able identify ten 
different human activities with an accuracy of 
95%.  

1 Introduction 
The task of modeling human activities from body-worn 
sensors has received increasing attention in recent years, 
especially in the ubiquitous computing (Ubicomp) field 
[Bao and Intille, 2004; Lukowicz et al., 2004; Patterson et 
al., 2003]. Although originally most of the research in 
activity recognition was done using vision sensors [Gavrila, 
1999; Pentland, 1996], it has increasingly become 
dominated by various types of wearable sensors, like 
accelerometers and audio. A fertile application domain for 
activity recognition is in the health care arena, especially in 
elder care support, long-term health-monitoring, and 
assisting those with cognitive disorders. In addition, activity 
recognition is an important component for modeling higher 
level human behavior, tracking routines, rituals, and social 
interactions.  

The majority of research using wearable devices, has 
concentrated on using multiple sensors of a single modality, 

typically accelerometers on several locations on the body 
[Bao and Intille, 2004; Kern et al., 2003]. The placement of 
sensors in multiple pre-defined locations can be quite 
obtrusive and is one of the limitations of such an approach. 
While the ultimate goal is to embed these devices into 
clothing, this technology is far from being commercially 
available and widely accepted. As a result, a single sensing 
device that can be integrated into existing mobile platforms, 
such as a cell phone, will be more appealing to users and is 
likely to garner greater user acceptance. Work by [Bao and 
Intille, 2004] has shown that an appropriate sensor subset 
(two locations), does not effect the recognition scores 
significantly (by less than 5%) compared to a system with 
five sensors; whereas the use of a single sensor reduced the 
average accuracy by 35%. Our hypothesis is that 
incorporating multiple sensor modalities will offset the 
information lost by using a single sensing device. 
Furthermore, multiple modalities will be better suited to 
record the rich perceptual cues that are present in the 
environment, cues that a single modality often fails to 
capture. Multiple modalities have already shown promise in 
earlier activity recognition experiments [Lukowicz et al., 
2002].  

To capture the diverse cues from movement, sound, light, 
etc., about ongoing activities, we have built a very small 
sensing unit (2.53 sq. in.) that includes eight different 
sensors: accelerometer, audio, IR/visible light, high-
frequency light, barometric pressure, humidity, temperature, 
and compass. Using these sensors, we have collected a large 
annotated dataset of various human activities from two 
volunteers over a period of six weeks. We compute over six 
hundred different features from these eight sensor 
modalities, which attempt to capture various attributes of the 
raw signal. 

Often in activity recognition, the choice of sensors and 
the features derived from them are driven by human 
intuition and by what is easily available, rather than by 
performance or practicality. Using the right features is 
crucial for recognition. We are working towards developing 
a framework that allows us to systematically identify 
modalities and features that are most useful for machine 
recognition and discrimination of natural human activities. 
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In the end, we want models that accurately recognize and 
track a variety of activities and a system that is lightweight 
enough to run on devices like cell phones, which many 
people already carry. Thus, minimizing the computation 
cost of our recognition system is also an important goal.  

The two main approaches that are used for classification 
in machine learning are: (i) generative techniques that 
model the underlying distributions of the classes and (ii) 
discriminative techniques that only focus on learning the 
class boundaries [Rubinstein and Hastie, 1997]. Both of 
these approaches have been used extensively in the vision 
and the wearable sensing communities for recognizing 
various human behavior and activities. The work presented 
in this paper is a hybrid approach that combines the two 
techniques. First, a modified version of AdaBoost proposed 
by [Viola and Jones, 2001], is used to automatically select 
the best features and to learn an ensemble of discriminative 
static classifiers for the activities we wish to recognize. 
Second, the classification margins from the static classifiers 
are used to compute the posterior probabilities, which are 
then used as inputs into HMM models. The discriminative 
classifiers are tuned to make different activities more 
distinguishable from each other, while the HMM layer on 
top of the static classification stage ensures temporal 
smoothness and allows us to continuously track the 
activities. 

The rest of the paper is organized as follows: Section 2 
provides an overview of the activity recognition system. 
Section 3 presents the feature selection and discriminative 
classifier training method. Section 4 describes how the 
results from the classifiers are combined with HMMs. 
Section 5 describes our experimental results and the 
performance of the system, and Section 6 discusses our 
conclusions and possible future directions 

2 Activity Recognition System Overview 
The first problem we address is the systematic identification 
of modalities and features that are well suited for accurate 
recognition of natural human activities. The second problem 
we tackle is how these features can be effectively used to 
develop models that accurately recognize and track various 
activities. Below we give a brief overview of the different 
components in our activity recognition system. 

Sensing and Feature Extraction 
Using a shoulder mounted multi-sensor board (Figure 1(A)), 
we collect approximately 18,000 samples of data per 
second. To reduce the dimensionality and to bring out 
details in the data we compute a total of 651 features; which 
include linear and mel-scale FFT frequency coefficients, 
cepstral coefficients, spectral entropy, band pass filter 
coefficients, integrals, mean and variances. We combine the 
features from various sensors to produce a 651 dimensional 
feature vector at 4Hz. However, since we have sensors with 
different sampling rates, there can be multiple instances of a 
feature within the 0.25 second window; that operate on 

different portions of the data. Furthermore, when calculating 
some features (e.g. the integral features) we incorporate a 
longer time window that varies from several seconds to as 
long as a minute. We restrict the time windows to only use 
data from the past, so that our system functions without any 
latency.  

Feature Selection and Discriminative Activity Models 
Earlier work has shown that discriminative methods often 
outperform generative models in classification tasks [Ng 
and Jordan, 2002]. Additionally, techniques such as bagging 
and boosting that combine a set of weak classifiers can 
further improve accuracy, without over-fitting to the 
training data [Schapire, 1999]. [Viola and Jones, 2001] have 
shown that boosting can be used not only as a method for 
combining classifiers but also as a method for selecting 
discriminative features. We use their proposed approach to 
select only a fraction of the total features, and to train very 
simple ensemble classifiers to recognize a broad set of 
activities. 

Capturing Temporal Regularities 
The activities people perform have certain natural 
regularities and temporal smoothness, e.g. people do not 
abruptly switch back and forth between walking and driving 
a car; thus, the recent history can help in predicting the 
present. Using a sequence of posterior probabilities 
computed from the instantaneous classifiers, we train 
Hidden Markov Models (HMMs) that significantly improve 
the performance and smoothness of our recognition system. 
By incorporating the static classification results we 
overcome the weakness of HMMs as effective classifiers 
[Jaakkola and Haussler, 1999].  

3 Selecting the Right Features  
Given a rich set of sensor data and features, our classifiers 
will work best if we select the right features that enable the 
classifiers to discriminate well between classes, and if we 
remove features that are not useful or which might even 
confuse the classifiers. Although it might be possible to 
hand pick the optimal features for certain activities, this is 
not a viable solution when the number of activities become 
large or when the sensor signals are not intuitive. In such 
scenarios, automatic techniques for finding the right set of 
features become increasingly important. A practical activity-
recognition system will use a minimal number of features 
and the simplest possible models needed for high accuracy.  

3.1 Feature Selection and Activity Classification 
using Boosted Decision Stumps 

In this paper, we assume that people engage in N different 
type of activities. Given the set of activities 

1 N{A ,...,A }=A , we also assume that we have a set of 
training data for each of those activities. Each sample in the 
training set consists of a feature vector 1 K{f ,..., f }=f  
extracted from the sensors. For each activity iA  we are 



interested in finding a ranking of the feature set 
i i i

1 K{r ,..., r }=R based on their usefulness in recognizing 
activity iA . Moreover, we want to find a cut-off point iτ  for 
the ranked feature set such that adding features beyond iτ  
does not significantly improve the accuracy of the classifier 

iC , i.e. 
1 N

i i i
r r(error(C (f ,..., f )),∆  

1

i i i
r rerror(C (f ,..., f )))

τ
≤ ε . 

The reason behind estimating iτ  is that, if i Nτ  then we 
can reduce the computational complexity of our classifiers 
by not extracting the less useful features. Since our final 
goal is to have the classifiers run on devices that users carry 
or wear, the computational costs of the classifiers are 
critical.  

For each activity iA , we iteratively train an ensemble of 
weak binary classifiers i i i

1 NH {h ,..., h }= (Figure 1(C)) and 
obtain a ranking i i i

1 K{r ,..., r }=R for the features using the 
variation of the AdaBoost algorithm proposed by [Viola and 
Jones, 2001]. The weak classifiers are constrained to use 
only one feature, and at each iteration m of boosting we 
select the feature and the associated weak learner 

i
m mh (f ) that minimizes the training error i

m m(f )ε on the 
weighted data. The error i

m m(f )ε  is used to re-weight the 
data for the next iteration and to compute the weight i

mα for 
i
m mh (f ) . At the end of this process, we have a ranking for 

the features based on how useful each feature is in 
discriminating iA  from the other activities jA ( j i)≠ , and 
we also have a set of weak classifiers i

m mh (f ) and weights 
for those classifiers i

mα . The final output is a weighted 
combination of the weak classifiers, and by estimating the 
error of iC  as a function of the number of features used, we 
can also find iτ for iC . So, for a given data point, the 
prediction of iC is 

i
i i i

m m mm 1
H ( ) sign( h (f ))

τ

=
= α∑f  

Each classifier iC  uses the top iτ  features, which is a 
fraction of the total number of features available, i.e. 

i

i i
1(f ,..., f )

τ
=if . 

We tried two different weak classifiers in our system: (i) 
a discriminative decision-stump and (ii) a generative naïve 
Bayes model (conditional probability distributions are 
modeled using histograms that have 100 bins/dimension) as 
our weak classifier. In our experiments, the decision stump 
consistently outperformed the naïve Bayes classifier, so we 

only use results from the decision-stump based classifier in 
the later sections. The decision stump finds the optimal 
threshold i

mθ  for each feature fm that minimizes the 
weighted error such that i

m mh (f ) 1=  if i
m mf > θ  and 

i
m mh (f ) 1= − otherwise.  

For the boosted static classifiers, the classification margin 
for a data point can reflect the confidence in that prediction 
[Schapire et al., 1997].  The margin of an example is the 
weighted fraction of the weak classifiers votes assigned to 
the correct class.  

i

i

i i i
m m mi m 1

i
mt 1

i i

h (f )
m ( )

H ( ) sign(m ( ))

τ

=
τ

=

α
=

α

=

∑
∑

i

i i

f

f f

 

However, constructing classifiers to output a posterior 
probability is very useful, especially if we want to combine 
the results of the multiple classifiers later on. One method of 
computing posterior probability directly is to fit a sigmoid 
function to the output of the ensemble classifier [Platt, 
1999] (Figure 1(E)). In our case, the posterior probabilities 
are derived as follows - 

i

i

m ( )
i

m ( )
p(C | ) ,  where  is a constant

1

ϕ

ϕ
= ϕ

+

i

i

f
i

f
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A static classifier predicts the label for each data point 
independently. Most of the time this independence 
assumption is clearly invalid and the prediction of previous 
data points can help with the current classification. A 
temporal model that uses the confidence of the predictions 
of the classifiers iC s  instead of the raw features if is likely 
to have a greater impact on the performance. The ability to 
recognize activities in continuous time chunks would also 
allow us to learn how people transition between activities 
and thereby allow us to learn more about people’s behavior 
and activity patterns. In the next section, we describe how 
we combine the confidence values of the static classifiers to 
build time-series models of the activities. 

4 Incorporating Prediction History using 
Hidden Markov Models 

HMMs have been successfully used in modeling different 
types of time-series data, e.g. in speech recognition, gesture 

Figure 1: Flow diagram describing the classification system presented in this paper. (A) Our sensor board records a sequence of raw sensor 
recordings (B) from which we compute our feature vector. We pick the top fifty features per class, from our feature vector, and (C) supply 
them as inputs to our ensemble of decision stumps classifier. (D) Each decision stumps classifier outputs a margin at time t. (E) This 
sequence of margins can then be converted to probabilities by fitting them to a sigmoid. (F) The sequence of probabilities is then supplied 
to ten HMM classifiers (G) each of which outputs a likelihood. (H) The class with the highest likelihood is the classified class. 



tracking etc. We use HMMs to capture the temporal 
dynamics; but instead of directly using the raw features 
selected in the previous section, we trained our HMMs 
using the posterior probabilities of the static classifiers. The 
advantage of using the posterior probabilities is that we can 
take advantage of the results from the discriminatively 
trained classifier, as well as reduce the complexity of the 
HMMs. The earlier work of [Jaakkola and Haussler, 1999] 
has also shown the benefits of combining generative models 
into discriminative classifiers by deriving kernel functions 
from probability models. [Clarkson and Pentland, 1999; 
Oliver et al., 2002] have used the output of an HMM model 
as input to another HMM. [Yin et al., 2004] have used the 
output of static classifiers directly into HMMs for speech 
reading application; however they do not compute the 
margin or class posterior probability of these classifiers, 
which can be more effective than the raw outputs [Platt, 
1999].  

For each activity, a new HMM model iλ (Figure 1(F)) is 
learned using a sequence of examples rather than individual 
instances. We construct a new input feature space based on 
the posterior class probabilities, which is  

 
Given a set of observations 1 2 T{ , ,..., }f f f  for each activity, 

we learn the parameters of the HMM iλ  using the standard 
expectation-maximization (EM) method. During testing, we 
have a continuous sequence S, which we use to compute the 
likelihood value Lι(t) for iλ  at time t using a sliding 
window of duration t∆  (Figure 1(G)) – 

i t t 1 t t i(t) P( , ,..., | , )+ += λf f f SL  

The final segmentation and classification is based on the 
HMM that has the highest likelihood value, 
i.e. i i iC (t) max (t)= L  (Figure 1(H)).  

Alternatively, we could have trained the various states of 
a single HMM to recognize the different activity classes and 
to learn the transition characteristic between activities. We 
choose not to do that here as our activities are primitive and 
a single transition statistic is not very meaningful. However, 
we believe that the output of these HMMs could be used to 
train a single dynamic model of more complex behavior 
where the transition statistics would also be more 
informative.  

5 Experiments 
To validate our approach, we recorded 12 hours of data 
consisting of a large number of activities (such as sitting, 
walking, jogging, riding a bike, driving a car, etc.) using the 
wearable multi-sensor board.  The dataset was collected 
across multiple days, by two volunteers (who are not the 
researchers) in various indoor and outdoor locations.  The 
recordings were done in long stretches (one hour on 
average), where the duration of the activities themselves 
ranged from seconds (e.g. entering a building), to hours 
(e.g. driving a car). The volunteers were asked to go about 
performing a series of activities naturally without any 
specific constraints on the order, for example “go to 
building X and walk around inside”. To capture day-to-day 
variations in the activities we collected multiple instances of 
the various activities over the course of six weeks. On 
average we have about an hour of data per activity and 
around 100 instances per activity.  

Feature Selection 
For the feature selection stage, we selected 80% of the total 
data available for each class for training. Based on the 
training examples we derived a ranking iR for the features 
for each activity individually using the boosted decision 
stump procedure described in section 3.1. Figure 2 shows 
the testing error as a function of the number of features used 
for classification. From the results we see that classification 
error tapers off at around i 50τ =  features for most classes. 
If we were to pick more features beyond the top 50 our 
performance only improves slightly with the testing error 
only improving <1% for 600 features. The practical 
advantage of features selection is that we can significantly 
reduce the computational burden on our resource 
constrained devices, without drastically affecting the 

Figure 2: Testing error rates per class as a function of the number 
of features selected. After 50 features are selected most of the 
testing errors for the classes have leveled off. The data graphed 
here is averaged from several smaller feature selection runs. 
 

Accelerometer 37.7%
Ambient Light (IR-Vis) 2.5%

Audio 23.9%
Barometric Pressure 12.9%

Digital Compass 2.1%
Hi-Freq Vis Light 3.3%

IR Light 3.6%
Relative Humidity 4.1%

Temp. from Barometer 3.2%
Temp. from Relative Humidity 3.2%

Visible Light 3.3%

Table 2: The percentage of features from the top 50 that originated 
from the different sensors, averaged across all activity classes. 
 

1

N

p(C | )

p(C | )

 
 =  
 
 

1

N

f

f

f



performance. Moreover, by performing boosting (re-
weighting the data and selecting discriminatory features 
successively based on the error), we perform much better 
than taking a non-boosted (no re-weighting) approach to 
selecting the best 50 features. The accuracy ((true positive + 
true negative) / (total # of examples)) for the boosted 
features selection was on average ~11% higher than the 
non-boosted method. Table 2 lists the contribution of the 
different sensors to the final classifier. The majority of the 
top 50 features came from the accelerometer, audio and 
barometric pressure sensors. Barometric pressure data was 
useful in distinguishing activities that involved floor 
transitions (e.g. walking up/down stairs, elevator up/down); 
the sensor is sensitive enough to pick up pressure 
differences between a single floor. 

Static Classification Results 
Using the top 50 features we tested the performance of the 
ensemble classifier for two different weak classifiers – (i) 
decision stump (discriminative) and (ii) naïve Bayes 
(generative). The total duration of our test dataset was five 
and a half hours. The decision stumps outperformed the 
naïve Bayes classifiers by a large percentage. Table 3 shows 
the precision (true positive/(true positive + false positive)) 
and recall (true positive/(true positive + false negative)) 
numbers for the 10 activities in the dataset using the 
ensemble of decision stumps. Table 5 lists the average 
precision and recall numbers for the naïve Bayes as well as 
decision stump classifiers.  

Continuous classification results 
Although the decision stumps results from Table 3 are quite 
good on their own, Figure 3 illustrates the classification 
errors encountered for a continuous trace. The majority of 
the trace tends to be correctly classified by the decision 
stumps; but, with some scattered misclassifications. The 
addition of the HMM layer on top of the static classifier 
helps to smooth these classification errors as shown by the 
line in Figure 3.   

The parameters of the HMMs were trained using 20 
example scenes (on average 30 minutes of scenes) for each 
class. Each HMM had two hidden states and Gaussian 
observation probabilities. Classification was performed 
using a 15 second sliding window with 5 second overlap. 
Table 4 shows the sliding window performance results for 
the HMM, using the posterior probabilities as inputs, tested 
with concatenated test scenes. The overall accuracy in this 
case was 95%. It is interesting to note that the points in 
Figure 3 where the HMM and ground truth differ appear to 
be somewhat natural and realistic; for example, classifying a 
region without any ground truth between walking and sitting 
as standing. In fact, the HMM output reveals some 
deficiencies in the ground truth. For example, some 
segments whose ground truth was marked as walking are in 
fact standing (as determined by post-analysis of the video by 
the experimenters), and are correctly recognized as standing 
by the HMM. 

To compare the performance to a more standard HMM 
approach, we trained a new set of HMMs that used the top 
50 raw features as inputs rather than the output of the static 
classifiers. The performance of these HMMs was 

Figure 3: Output of the static decision stumps classifiers (at 4Hz), and the HMM classifiers (trained with output probabilities of the static 
classifiers) for a continuous 90 minute segment of the data. The results are overlaid on top of the ground truth which was obtained by 
annotating video recorded from a webcam worn by our volunteers. The video was only used for determining ground truth and not as an 
additional sensor input. 
 



significantly worse, even worse than the static classifier, 
demonstrating the importance of discriminative classifiers in 
distinguishing between activities (see table 5 for a 
comparison of the overall precision and recall numbers for 
the various classifiers used in our experiments). We 
recognize that the modeling of more complex activities may 
require a generative model of personal behavior. However, 
we believe that discriminative classifiers that map sensor 
data into primitive activity classes will reduce a large 
amount of the sensor noise and allow us to learn complex 
behaviors more effectively.  

6 Conclusion 
The problem of recognizing human activities from sensor 
data presents diverse statistical challenges: different classes 
of actions need to be actively distinguished from each other; 
and a model needs to incorporate the fact that people’s 
actions are extended over time. In the present study, we 
approached these problems by combining the discriminative 
power of an ensemble of decision stumps with the 
generative and temporal powers of HMMs.  

Table 3: Precision and recall numbers for the decision stumps classifier. A randomly selected 20% set of data was set aside and used for 
the test results here. Overall accuracy is 91%. 

Table 4: Precision and recall numbers for the HMM classifier, using posterior probabilities as inputs. Overall accuracy is 95%. 

Naïve Decision HMM with HMM with
Bayes Stumps Decision Stumps Raw Features

Precision 92% 98% 99% 54%
Recall 45% 84% 91% 40%

Table 5: Overall precision and recall numbers for the various generative and discriminative classifiers, used in evaluating our system.  
 

Sitting Standing Walking Jogging
Walking 
up stairs

Walking 
down 
stairs

Riding a 
bicycle

Driving 
car

Riding 
elevator 
down

Riding 
elevator 
up

Sitting 90.9% 43.3% 1.1% 0.3% 2.6% 2.7% 7.2% 10.2% 9.0% 5.6%
Standing 7.1% 44.9% 0.3% 0.9% 0.3% 1.8% 0.7% 1.5% 1.5%
Walking 1.2% 8.7% 95.1% 1.3% 21.1% 12.9% 5.4% 1.3% 0.8% 0.7%
Jogging 0.0% 0.1% 98.3% 0.1%
Walking up stairs 0.0% 0.1% 1.9% 73.6% 0.7% 0.1% 0.0% 0.2%
Walking down stairs 0.0% 1.4% 0.1% 1.0% 83.0% 0.1% 0.5%
Riding a bicycle 0.1% 0.1% 0.2% 85.3%
Driving car 0.5% 0.0% 0.0% 0.2% 0.1% 87.7% 0.1% 0.2%
Riding elevator down 0.1% 1.7% 0.1% 0.1% 0.0% 87.5% 0.4%
Riding elevator up 0.1% 1.2% 0.0% 0.5% 0.1% 0.5% 91.4%

Sitting 86.6% 10.0% 0.8% 0.0% 0.1% 0.1% 0.8% 1.3% 0.2% 0.1%
Standing 38.2% 58.2% 1.3%  0.3% 0.1% 1.0% 0.5% 0.2% 0.2%
Walking 1.6% 2.7% 92.6% 0.0% 1.5% 0.7% 0.7% 0.2% 0.0% 0.0%
Jogging 0.1%  1.8% 97.7%  0.3%     
Walking up stairs 0.1% 0.2% 26.1%  72.8% 0.6% 0.1% 0.1%  0.1%
Walking down stairs  0.1% 22.7% 0.1% 1.2% 75.4% 0.3%  0.3%  
Riding a bicycle 0.8% 0.3% 1.3%    97.6%    
Driving car 4.1% 0.0% 0.1%  0.1%  0.1% 95.6% 0.0% 0.1%
Riding elevator down 3.4% 14.4%   0.2% 0.2%  0.1% 81.3% 0.3%
Riding elevator up 3.2% 10.0% 0.1%  1.0%   0.4% 0.4% 84.8%
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Sitting Standing Walking Jogging
Walking 
up stairs

Walking 
down 
stairs

Riding a 
bicycle

Driving 
car

Riding 
elevator 
down

Riding 
elevator 
up

Sitting 89.8% 38.5% 0.5% 0.4% 33.4%
Standing 10.1% 50.8% 1.4%
Walking 0.1% 7.4% 97.7% 5.2% 2.5%
Jogging 100.0%
Walking up stairs 94.8%
Walking down stairs 0.5% 97.5%
Riding a bicycle 3.3% 99.6%
Driving car 66.6%
Riding elevator down 100.0%
Riding elevator up 100.0%

Sitting 87.5% 3.7% 0.1%    0.1% 8.6%   
Standing 65.6% 32.8% 1.6%        
Walking 0.4% 4.0% 93.8%  1.3% 0.4%     
Jogging    100.0%       
Walking up stairs     100.0%      
Walking down stairs   2.5%   97.5%     
Riding a bicycle  1.7%     98.3%    
Driving car        100.0%   
Riding elevator down         100.0%  
Riding elevator up          100.0%

Classified Activity (by HMM)

P
re

ci
si

o
n

L
ab

el
ed

 A
ct

iv
it

ie
s

R
ec

al
l

L
ab

el
ed

 A
ct

iv
it

ie
s



As our presented results have shown, the combination of 
discriminative and generative classifiers is more effective 
than either of the classifiers on their own. Not only does the 
HMM on-top of the discriminative classifier perform better 
than the discriminative classifier on its own, but it also 
produces very smooth and accurate outputs as Figure 3 
shows.  

Feature selection plays an important role in our system 
not only in improving the performance of our classifier but 
also in creating a practical system. Our selection of the best 
50 features for our top classes leaves us with 242 features 
from our original 651. This reduces the number of features 
necessary by more than 60%, which is a significant 
computational saving. This savings could be further 
improved upon by optimizing the calculation of the features 
to take advantage of the new subset, for example there are 
efficient techniques to obtain FFT coefficients only for 
required sub-bands [Goertzel, 1958]. In addition, this subset 
could be further reduced by allowing the feature selection 
process to determine a more optimal stopping point. 

Thus, our work lays out several directions in which the 
automatic recognition of human actions can be pursued 
further. First, multi-modal wearable sensors provide a 
cheap, lightweight and unobtrusive means of obtaining 
richly detailed data in unconstrained environments, and over 
long periods of time. Second, the very richness of such 
sensor readings, and the mass of data collected, demand that 
suitable preprocessing and data-reduction techniques be 
applied. We found that by selecting the most informative 
features, computational costs could be cut by more than 
60%, although still greater savings are probably attainable. 
Third, the multi-faceted nature of human activities presents 
opportunities for multiple machine-learning approaches to 
be combined, with the complementary strengths of different 
approaches (in this instance, boosted decision stumps and 
HMMs) meeting different aspects of the computational 
challenge. Our initial studies, presented here, have yielded 
high recognition rates, suggesting that this is a fruitful 
approach. Our future work will focus on incorporating and 
building on the techniques presented here to recognize more 
complex behavior patterns (e.g. cooking, cleaning, etc.) 
Further development of these ideas will, we hope, lead to 
activity recognition systems that can move from beyond the 
research lab out into the real world, offering applications in 
areas as diverse as smart rooms, ethnography, and health 
care for both the young and aging population. 
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