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Abstract 
We propose a novel method that, given an unknown 

moving object trajectory, determines which known 
activity type the trajectory would belong to. The 
proposed method utilizes various data mining 
techniques, including clustering, classification, and 
Markov model. We collect trajectories of moving 
objects of known activity types and build one Markov 
model for each activity type. Given an unknown 
trajectory, we compute the likelihood of this trajectory 
belonging to each activity type using the Markov 
model and the trajectory is determined to belong to the 
activity type that results in the highest likelihood. We 
use only location information of moving objects. We 
do not use any other information such as color, size, 
or shape of objects, or contextual information. We 
demonstrate the effectiveness of this method using 
trajectories of students playing two sports activities – 
Ultimate Frisbee and volleyball. We show that the 
accuracy of this method is as high as 94%. 

1. Introduction 
Surveillance and monitoring of a large number of 

moving objects (e.g., humans or vehicles) have been 
studied extensively in recent years. One important task 
in this research is to identify an unknown moving 
object trajectory (or trajectories) as that of one of 
known activity types. We call this problem activity 
identification problem. 

We propose a novel method to solve this activity 
identification problem. There are two main issues that 
need to be addressed: (1) What kind of information 
can be and need to be collected to model activity types, 
and (2) what kind of model would be most effective to 
capture the behavioral patterns of moving objects. 
With the advent of sophisticated surveillance systems, 
we can collect many different types of information 
from target objects. We can collect their shapes, colors, 
textures, sizes, movements, and other contextual 
information such as temporal information and 
geographic information in the surrounding area. 

However, it is not always possible to collect all this 
information. Even when all this information is 
available, it is desirable to use only a part of available 
information if that much is sufficient to perform an 
intended task because it will decrease the 
computational complexity and storage requirements. 
In the proposed method, we use only location 
information of moving objects. We show that we can 
still achieve a very high accuracy without using any 
other information.  

Assume that we have a collection of trajectories, 
each of which is a sequence of (x, y)’s, for different 
activity types. If we represent each trajectory with a 
fixed number of features (or attributes), then the 
activity identification problem becomes a typical 
classification problem. We can build a classifier model 
from these trajectories and use it to classify an 
unknown trajectory. One problem in this approach is 
due to the fact that the behavior of a moving object 
trajectory is not homogeneous over time; rather it may 
change over time (e.g., walk slowly, run fast, and walk 
slowly again). Representing a trajectory with a set of 
features may capture a global behavior of the 
trajectory but it will effectively hide the local 
behaviors. One viable approach is to divide each 
trajectory into segments in such a way that each 
segment may represent an atomic behavior type (e.g., 
walk slowly, run fast, or move in a zigzag fashion) and 
to represent a trajectory as a sequence of such 
segments. As for a model to capture such information 
effectively, we choose a discrete-time Markov chain 
because it naturally captures the time-varying aspects 
of moving objects.  

The paper is organized as follows. Section 2 
reviews previous work. Section 3 presents a high-level 
description of the proposed method. Section 4 
discusses how we extract trajectories of moving object 
from video images. Section 5 describes a model 
building process, Section 6 shows how we validated 
our method, and Section 7 concludes the paper. 



 

2. Related work 
Activity recognition from video has received 

widespread attention in the past several years within 
the computer science and AI communities. Many 
approaches extract low level features from the imagery 
and use statistical methods to classify events. Zhang et 
al. [14] divide the video into equal duration segments 
and compute spatial and motion histograms for each 
segment. The dynamic relationships of these features 
are then captured in a co-occurrence matrix. 

Instead of computing global features such as a 
histogram, most approaches detect localized events 
such as the appearance of an object, or they compute 
the trajectory of a moving object. For example, 
Gaborski et al. [1] look for motion events in each 8-
by-8 pixel region in the video. Each region has a pool 
of clusters that represents unique events observed by 
the system in that region. Localized novel events can 
be recognized in each region. 

In our approach, we take continuous time series 
data (i.e., the x(t), y(t) locations of tracked objects) and 
represent it as a sequence of discrete symbols.  This 
allows the tools of symbolic pattern recognition to be 
used to recognize specific patterns, or to detect 
anomalous patterns.  For example, the behavior of an 
electronic circuit can be represented as a time 
sequence of symbols, where the symbols correspond 
to discretized phase measurements [8].  Another 
example is the representation of behaviors of visitors 
to web sites [2].   

One way to model a behavior that is represented by 
a sequence of discrete symbols, is to use a Markov 
model.  Having achieved good success in time series 
data, Markov models have been extended to 
recognizing activities using machine vision [4,13,16]. 

In the work described above, the “symbols” (e.g., 
states of the Markov model) are manually defined by 
the programmer, although the parameters of the model 
(such as transition probabilities) are learned 
automatically from examples.  In contrast, our method 
automatically discovers the symbols through a 
clustering algorithm.   

Much previous work on vision-based activity 
recognition makes use of additional information 
derived from the imagery, such as the shape, size, or 
other contextual information (e.g., [3, 5, 9, 11]). 
However, our work only uses the raw track position 
data, (x(t), y(t)), and no other information. This makes 
our work potentially applicable to situations where the 
sensor only returns the position of the object and no 
other information; e.g., a laser tracker [7]. 

A study in [10] is similar in that it also discusses 
classification of trajectories. However, this study is 
about classification of trajectories of moving cells or 
viruses and uses fixed length trajectories. On the 

contrary, our method allows varying trajectory lengths 
and classifiers are built on segments of trajectories.  

3. Overall process 
The main idea of our method is as follows. If a 

trajectory is discretized and represented as a sequence 
of symbols, each of which represents an atomic 
behavior type, the collective behavior of an activity 
type, or the signature of the activity type, can be 
modeled by a discrete-time Markov chain. Suppose 
there are n activity types of interest. We first collect 
trajectories of these activity types, segment and 
discretize them, and build n Markov models, one for 
each activity type. Given an unknown trajectory, then, 
we compute the likelihood of this trajectory belonging 
to each activity type using the corresponding Markov 
model. The trajectory is determined to belong to the 
activity type that results in the highest likelihood. 

When an unknown trajectory is tested, it needs to 
be discretized in the same way as training trajectories 
were discretized. For this purpose, we build a 
classifier model from the segments of training 
trajectories and use the model to discretize 
unknown/test trajectories. Figure 1 shows the overall 
process of our activity identification method. The left 
column shows a model building process and the right 
column represents a validation/test process. We used 
the data mining software weka [12] to perform  
necessary clusterings and classifications. 
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Figure 1. Overall activity identification 
process. 

 



 

4. Trajectory extraction 
We used a digital camcorder, and then transferred 

the video to a computer in the form of an AVI movie 
file.  Progressive scan mode was used.  We then 
converted the AVI movie into a sequence of still 
images. The images were 640x480x8 pixels 
(grayscale), and were taken at 30 frames per second. 

An automatic tracker program was developed to 
automatically track all moving objects in the scene and 
write their coordinates to a trajectory file.  First, a 
background, or “reference” image was obtained by 
averaging all the images.  Because moving objects 
tend to pass quickly in front of the background, they 
tend to average out.  The operation of the tracker was 
as follows: 

 
1. Read in the next image of the sequence. 
2. Take the difference between this image and the 

reference image.  Threshold the difference image 
and find connected components. 

3. For each component that is not already being 
tracked from previous images, start a new track.  
The track file information consists of the location of 
the object, its “bounding box” in the image, and an 
“appearance template” of the object within the 
bounding box.  A “shape template” is also 
computed, which when thresholded is a binary 
image of the silhouette of the object (Figure 2). 

4. For each tracked object, perform a cross correlation 
operation to find the most likely location of the 
template in the new image.  Then update the 
template image of the object by computing a 
running average of its image. 

 

 
Figure 2. Object templates. 

 
The actual world coordinates were also computed, 

using the assumption of a flat world.  Very short 
trajectories (less than 3 seconds) were discarded, 
because they were considered to be due to noise. The 
(x, y) locations of the remaining trajectories were 

smoothed by running a low pass (Gaussian) filter, with 
σ = 0.4 seconds. Figure 3 shows video captures and 
the plot of resulting trajectories of Frisbee and 
volleyball games. 

Although the automatic tracker worked well for 
most scenes, it gave incorrect results when objects 
occluded each other or moved together. Therefore, for 
the volleyball scenes, we manually extracted the 
trajectories using a mouse. 

 
Figure 3. Video captures and trajectories of 

Frisbee and volleyball. 
 

5. Model building 
In this section, we discuss how we build Markov 

models from training trajectories. We also describe 
how we build a classifier model, which is used to 
discretize test/unknown trajectories.  

5.1 Segmentation and discretization 
The collected trajectories are divided into two sets 

– training data set and test data set. We first describe 
how training trajectories are discretized. Discretization 
of test trajectories will be discussed in Section 6. We 
divide each trajectory into segments of the same 
length in terms of the time duration of a segment. If 
the length of a segment is too long, it is possible that a 
segment may include more than one type of behavior 
(e.g., walking and running). On the other hand, if a 
segment is too short, the incremental behavioral 
change between two consecutive segments are too 
small and, thus, the resulting segmentation may 
become meaningless. We found the value of 3 seconds 
maximizes the overall activity identification accuracy. 
Since 30 samples were taken per second, there are 90 
samples, or 90 (x, y) locations, in each segment. 

Our goal at this stage is to automatically identify 
atomic behavior types in the training trajectories. 
Since there are no known behavioral labels on the 



 

segments, we need to apply a clustering algorithm. 
First, a behavior of a segment must be represented by 
a set of features. Let a segment s = <p1, p2, …, pN>, 
where N = 90, pi = (ti, xi, yi), and ti is a timestamp. We 
considered, for each segment, the following features: 
average speed (as = ∑ −

=

1

1

N

i iv / (N – 1)), mean change 

of speed (mCs = mean(cs1 : csN-2)), variance of change 
of speed (varCs = var(cs1 : csN-2)), overall heading (oh 
= h1,N), mean change of heading (mCh = mean(ch1 : 
chN-2)), variance of change of heading (varCh = 
var(ch1 : chN-2)), path length (pl = ∑ −

= +
1

1 1,
N

i iid ), 

and the ratio of the overall distance to path length 
(odPl = di,N / pl). Here,  di,j is the Euclidean distance 
between pi and pj, vi is the forward speed of the 
moving object at time ti (or vi =  di,i+1 / (ti+1 – ti)), hi,j is 
the heading of the vector formed by connecting pi to pj, 
hi is short for hi,i+1, csi = vi+1 – vi, chi = hi+1 – hi, 
mean(csi : csj) = ∑=

=

jk

ik kcs  / (j – i + 1), and var(csi : csj) = 

∑ =

=

jk

ik
(csk – mean(csi : csj))2 / (j – i). The mean(chi : 

chj) and the var(chi : chj) are defined in the same 
manner. Among these eight features, we found as and 
odPl maximize the activity identification accuracy. 
The as represents how fast an object moves and odPl 
represents how straight/wiggly the movement is.  

After each segment is represented by (as, odPl), we 
apply a clustering algorithm to all segments and each 
segment is assigned a cluster identifier to which it 
belongs. Then, each trajectory is represented as a 
sequence of cluster identifiers, or distinct symbols. 

5.2 Markov model 
A Markov model for an activity type consists of a 

prior probability vector, also called state probability 
vector, and a state transition matrix. Let us assume that 
there are l different activity types A1, …, Al, and m 
distinct symbols sym1 … symm (or m clusters). We 
construct a prior probability vector Vk, 1 ≤ k ≤ l, of 
size m and an m × m matrix Mk for each activity type 
Ak. Here, Vk(i), 1 ≤ i ≤ m, is the prior probability of 
symbol symi, and Mk(i, j),  1 ≤ i, j ≤ m, is the transition 
probability from symbol symi to symbol symj in the 
trajectories of activity type Ak. Both probabilities can 
be learned from the discretized training trajectories of 
Ak.  

Given an unknown track tr = <s0, s1, …, sn>, where 
si∈{ sym1 … symm}, the likelihood that tr belongs to 
the activity type Aj is computed as: 

P[Aj | tr ] = Vj(s0) (∏ −

=

1

0

n

i
Mj(si, si+1))         (Eq. 1) 

We will refer this probability as membership 
likelihood of the trajectory tr for the activity type Aj. 

5.3 Classifier model 
Once Markov models are built, it is necessary to 

validate the models with test trajectories. For each test 
trajectory, we compute the likelihood of belonging to 
each activity type using the corresponding Markov 
model. First, all test trajectories needed to be 
segmented and each segment is assigned an 
appropriate symbol. Since this symbol assignment 
should be done consistently with the symbol 
assignment to training trajectory segments, we also 
build a classifier model from training segments. Then, 
we use this classifier model to classify segments in the 
test trajectories and assign resulting symbols to them.  

6. Validation 
To validate our method, we used trajectories of two 

sports activities – Ultimate Frisbee and volleyball. We 
used a video camera to record the games from the 
rooftop of a building on our campus while students 
were playing the games on the ground. We processed 
the images as described in Section 4 and obtained 70 
Frisbee trajectories and 72 volleyball trajectories. Each 
trajectory was divided into equal length segments with 
segment length of 3 seconds. The statistics on the 
trajectories and their lengths (in terms of number of 
symbols in each trajectory) of the trajectories are 
shown in Table 1. 

 
Table 1.  Statistics on trajectories. 

 Frisbee  Volleyball 
# trajectories 70 72 
Total # segments (or symbols) 428 646 
Mean length 6.11 8.97 
Std. deviation of length 3.07 2.13 

 
Among these trajectories about one fourth were 

randomly chosen and set aside as test trajectories. 53 
Frisbee trajectories and 54 volleyball trajectories were 
used as training trajectories, which included total 798 
training segments. After each segment was represented 
by (as, odPl), a k-means clustering was applied to all 
segments with k= 5. The value of k was chosen in such 
a way that it maximizes the overall accuracy of 
activity identification. Figure 4 shows the result of the 
clustering. 

Using the result of this clustering, each segment 
was assigned an appropriate symbol and all training 
trajectories were discretized. We also built a classifier 
model using all 798 segments. Figure 5 shows a 
simplified decision tree built from these segments. To 
make the figure simple, we did not include all 
branches in the tree. Some branches which have a 
small number of segments were pruned.  



 

 

 
Figure 4. Segment clustering (x odPl, y as) 
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Figure 5. Decision tree. 
 
 

The next step is to build Markov models. Let A1 = 
Frisbee and A2 = volleyball. The prior probability 
vectors and the state transition matrices are shown 
below.  

 
V1 = (0.0445, 0.1085, 0.1177, 0.1465, 0.5828) 
V2 = (0.1446, 0.0352, 0.3037, 0.4256, 0.0909) 

 
M1 (Frisbee)        

 0 1 2 3 4 
0 0.0000 0.2727 0.0909 0.2727 0.3637 
1 0.0400 0.4000 0.1200 0.0400 0.4000 
2 0.0312 0.0625 0.1562 0.1250 0.6251 
3 0.0732 0.0244 0.0975 0.3171 0.4878 
4 0.0526 0.0855 0.1316 0.1118 0.6185 
 

M2 (volleyball)        
0 1 2 3 4 

0 0.2222 0.0318 0.3016 0.3174 0.1270 
1 0.2000 0.4000 0.2667 0.0000 0.1333 
2 0.1000 0.0000 0.3308 0.5000 0.0692 
3 0.1778 0.0000 0.3111 0.4722 0.0389 
4 0.0952 0.1667 0.231 0.2143 0.2857 

 
Finally, we segmented test trajectories (17 Frisbee 

and 18 volleyball trajectories) and assigned 
appropriate symbols to all segments using the decision 
tree of Figure 5. Then, for each trajectory, we 
predicted which activity type the trajectory would 
belong to by computing the membership likelihood 
using Eq. 1 and compared this predicted membership 
with the known membership of the trajectory. Table 2 
shows the results. All 17 Frisbee trajectories were 
correctly identified and only 2 out of 18 volleyball 
trajectories were incorrectly identified, and the overall 
accuracy was 94.2%. 

 
Table 2.  Test results. 

Test Trajectories Classified as Acc 
Activity #traj Frisbee volleyball (%) 
Frisbee 17 17 0 100 

Volleyball 18 2 16 88.8 
Overall 35 correct: 

33 
incorrect: 

2 
94.2 

 
We conducted another experiment to see whether 

prior probability vectors alone are sufficient to identify 
different activities. Given an unknown track tr = <s0, 
s1, …, sn>, the membership likelihood of tr for the 
activity type Aj is now computed by:  

P[Aj | tr ] = ∏ =

n

i 0
Vj(si)                            (Eq. 2) 

The result of this experiment is shown in Table 3. 
 
Table 3. Test result with prior probability 

vectors. 

Test trajectories Classified as Acc 
Activity # traj Frisbee volleyball (%) 
Frisbee 17 16 1 94.1 

Volleyball 18 3 15 83.3 
Overall 35 correct: 

31 
incorrect: 

4 
88.6 

 
This experiment shows that using only prior 

probability vectors also results in a reasonably high 
accuracy of 88.6%. However, we can achieve higher 
accuracy if we also use state transition matrices. Note 



 

that there is no increase in computational complexity. 
An additional burden is an extra storage needed to 
store the transition matrices, which is negligible.  

Since a decision tree divides a feature space along 
the lines parallel to the dimension axes, the decision 
tree of Figure 5 does not accurately match the result of 
the clustering shown in Figure 4. One possible 
solution to this problem is to use other types of 
classifiers to build a model. For example, a support 
vector machine (SVM) is known to split a feature 
space with arbitrary lines or nonlinear boundaries. So, 
we also conducted an experiment with different 
combinations of (clustering algorithm, classifier). In 
addition to the k-means algorithm, we considered EM 
and also two more classifiers – SVM and artificial 
neural network (ANN). Table 4 shows the overall 
activity identification accuracies of different 
combinations. 

The result shows only the (k-means, SVM) 
combination gives us comparable accuracy as the (k-
means, decision tree) combination. Since a decision 
tree classifier is more efficient (in terms or 
computational complexity), we chose it over SVM. 

 
Table 4. Accuracies of different (cluster, 

classifier) combinations. 

Clustering Classification Accuracy 
k-means Decision tree 94.2% (proposed method) 
k-means SVM 94.2% 
k- means ANN 88.5% 
EM Decision tree 82.8% 
EM SVM 85.7% 
EM ANN 85.7% 

 

7. Conclusion 
Identifying unknown moving object trajectories is 

an important but nontrivial task in many application 
areas. We proposed a novel method with which we 
can accurately identify different activity types of 
moving trajectories. The proposed method utilizes 
various data mining techniques, including 
segmentation, clustering, classification, and Markov 
model. We demonstrated the effectiveness of the 
method using two sports activity trajectories. We 
showed, through a validation process, that the 
accuracy of the model is as high as 94%.  

In the future, we plan to test our method on 
trajectories of more different types of activities. We 
will also study how to incorporate interactions among 
trajectories of the same activity type into the model (or 
signature) of the activity type. 
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