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Abstract

In recent years location-based services have seen a dramatic increase in adoption, and

all modern smartphone platforms have integrated services to facilitate the creation

location-aware applications. Such applications enhance the experience of users, using

location to modify content or alter the behaviour of the application to better suit the

circumstances.

The product of this project is a context-aware API for the Android platform. This

allows applications to augment the already available location data with extra context

about the user's situation - primarily their current activity. It also develops an al-

gorithm for recognising places which are relevant to the user, and monitoring which

activities are performed in journeys between those places, thus enabling predictions

of the user's likely destination based on their activity.

Research into other methods of annotating context was conducted, and it was found

that most potential sources of context information either produced little or no infor-

mation, or were too battery-draining to perform in a real world environment with

current technology. Much e�ort was placed into optimising the API to have as small

e�ect on battery life as possible.

A context-aware API was successfully produced, along with a collection of applications

which use the API in order to demonstrate its features or provide example use cases.
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Part I. Introduction

1 Proposal

Objective: to create an API for android applications to query the
user's [probable] current activity, and to consider and implement
possible uses for this API in existing applications. The user's activ-
ity would be determined based on available sensor and ambient data
(e.g. time, location, orientation/movement of device, background
noises, camera image, in-range bluetooth devices, etc), previous be-
haviour of the user, and possibly behaviour of other users which has
been shared between devices.

Motivation: Activity-awareness would be a major step forward in
making mobile devices better able to adapt to what the user wants
to do with them. The latest generation of mobile phones have made
location-aware applications quite ubiquitous, and a lot of these could
be further enhanced by making them activity aware. For example,
an application which lists businesses in a certain area could not only
know the search area (by merit of being location-aware), but could
also make an educated guess at what you're looking for (e.g. the
activity API may suggest the user is likely to be going to lunch,
so the application could initially show nearby eating establishments
instead of requiring the user to search for them).

Challenges/issues: primary challenge is developing an algorithm
which can make reasonable estimates as to the user's activity (or
attempting and then justifying why such an algorithm is not feasi-
ble, and investigating requirements or alternatives), and would form
the bulk of the project. Sub-challenges within this include: research-
ing/implementing machine learning techniques so the algorithm can
take previous behaviour into account, processing data from 'messy'
inputs such as mic/camera, and designing an API that would enable
third-party app developers to easily make their applications activity
aware.

Approach: data from sensors would need to be processed (e.g. mic
input processed into a �gure for ambient noise level in dB). The
combination of this processed data would then need to be fed into
an algorithm (possibly a neural network) to determine likelihood of
various activities. There would need to be some mechanism for users
to correct or train the system (at least initially), and it's possible that
this data could then be shared to other users of the api/application.
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2 Aims and Motivation

The primary aim of this project is to create an application for the Android
platform that can sense the user's context in some fashion. This application
will have a public interface which will allow other applications written by third
party developers to read and receive updates about the user's context.

The ease of access to location aware services in modern smartphone platforms
has lead to a surge in the number of applications which improve their utility
or behaviour by integrating location information. It stands to reason that if
additional context information were available, developers would be able to take
advantage of this and further improve the utility of their applications. This, in
turn, would increase the productivity of the end-user.

As discussed inII, a large amount of existing research has been done on context-
aware devices, and speci�cally on activity-aware systems. There have also been
some limited implementations for smartphones. Unfortunately, the end product
of most of this research is not suitable for deployment or use in practical, every-
day circumstances. This project aims to produce a working prototype which can
be used on a day-to-day basis on an Android smartphone without signi�cantly
degrading performance.

3 Issues and challenges

One of the main challenges for this project will be accomplishing accurate and
useful context-awareness without signi�cantly hindering the battery life or per-
formance of a typical device. Existing algorithms tend to be extremely verbose,
sometimes performing upwards of thousands of calculations per classi�cation;
on a mobile device this is likely to severely cripple battery life.

The problem of battery life a�ects all areas of the project - from how often
data is collected, how the data is then analysed, and which sources of potential
data are consulted. A large amount of time will need to be spent analysing
the various potential data sources and establishing whether or not the cost in
consulting them is worth the reduction in battery lifetime and any gain in the
reliability or accuracy of context information.

The aim of the application is to provide the context data to third-party appli-
cations, so another challenge will be designing an appropriate interface which
will allow applications to query and receive updates about the user's context.
Consideration will have to be given as to any security measures (such as access
control) which may need to be applied in order to protect user privacy.

4 Structure

Part II summarises some of the current work in the �eld of context-aware sys-
tems and activity inference. Part III explains in detail the techniques developed
to classify user activity from accelerometer data, applications developed to fa-
cilitate this, and analyses data collected from users to determine the accuracy
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of the activity classi�cation algorithms. Parts IV and V deal with potential
context information from other sensors such as microphones and cameras, and
the contextual value of the user's location, and how interesting places can be
inferred.

Part VI introduces the Context Analyser, the primary output of this proejct,
and its suite of related applications. The project is evaluated in part VII and
conclusions drawn and future work considered in part VIII.
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Part II. Background

Context- or Activity-Aware devices is an area currently under lots of research.
There are many and varied applications of activity-aware devices, ranging from
personal �tness and healthcare to training factory workers or merely playing
music.

While this research is going on, there has been a huge expansion in the owner-
ship, use and power of mobile telephones. Mobile telephones are so ubiquitous
and now come with such a large sensor platform that they are the obvious choice
for implementing activity-aware technologies for use in day-to-day life.

This project aims to make a context-aware API available on an open mobile plat-
form, which will enable developers to start adding context-aware functionality
to their applications without the extremely large overhead of writing a logger
and classi�er themselves, or re-engineering the application to use an existing
context-aware framework if one is available.

5 Applications

There are many documented applications of activity-aware systems, and current
research e�orts which bring the technology to mobile telephones will only serve
to lengthen this list.

The canonical example for activity-awareness, especially on mobile telephones,
is modeling the user's �interruptibility�[29, 23]. This allows the software to know
whether it's appropriate (or "polite") to disturb the user, and can advise the
user's contacts when they are busy. It can also be used to create a �smart an-
swering machine� [15] which can selectively direct calls straight to an answering
machine if the user is engaged in an "uninterpretable" activity and the call does
not appear to be important. These allow the user's mobile telephone to bet-
ter approximate human behaviour - when approaching someone in person it is
normally quite easy to determine whether it would be polite or necessary to dis-
turb them, based on their demeanour, activity, and the urgency of your request;
when picking up the telephone it is not possible at all without assistance from
an activity-aware system.

The current implementations of these ideas have several problems, however.
The more interesting research [15] requires a static camera �xed in an o�ce
to observe user behaviour, instead of implementing it directly on a telephone,
which obviously constrains its usefulness. Of the two solutions actually targeted
at mobile telephones, one[29] requires bulky custom hardware which the user
must carry on their belt, and the other [23]does not expose an API to other
applications and only surfaces the context-aware functionality in two small ap-
plications whose focus is on social interaction rather than improving the user's
experience of the telephone locally. This project will aim to bring the ideas of
these to generic hardware (an Android mobile telephone), and to provide an
API which other applications can harness.

One use particularly suitable for mobile phones is dynamic adaptation of the
device's settings based on the user's current activity and context[26]. When a
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user is walking the device can dynamically increase the font size to make it easier
to read with an unsteady hand, and correspondingly decrease it when the user
is stationary. In a similar fashion, the brightness of the backlight can be altered
based on the ambient light level, and the ringer volume altered according to the
noise level. Unfortunately this research did not progress beyond a feasibility
study and was implemented on a Nokia 6110, which is severely outdated by
today's standards.

Another popular area for activity-aware systems is in healthcare. Such systems
can be used to monitor vulnerable people as they go about day to day activities
to ensure that they're not in trouble - several systems[30, 19] can be used to
monitor elderly persons and summon help if it is detected that they have fallen.
Another healthcare application[32] allows nurses to remotely monitor the activ-
ities of their patients in a hospital ward, allowing them to respond to problems
and keep up-to-date with their patients' well-being while not physically present.
Activity-aware applications have also been used to try to encourage users to be
more healthy; one novel application records the day-to-day �tness activities a
user performs and uses this as a basis for a virtual �garden� that blossoms or
wilts according to how much the user works out in a week[8].

As well as monitoring activities which the user is familiar with, activity-aware
systems can also be used to assist users in learning new activities. One application[31]
monitors the activities of trainee workers in a car manufacturing plant, and
helps to provide a link between theoretical classroom-based training and prac-
tical work. The activity-aware system can o�er advice to the workers that's
directly related to the current task they're performing, and can even monitor
their activities for compliance with procedures and give them a score afterwards.

While the research into healthcare and training applications present novel uses
of activity-aware systems, the applications themselves are not really applicable
to a mobile device or the scope of this project. The research does, however,
describe the techniques used in those applications for activity classi�cation and
should prove useful in that respect.

Other areas of research include making activity-aware suggestions to the user
[5], or issuing reminders or alerts based on the user's activity [25]. One example
of the latter is an activity-aware system that detects when the user is making
co�ee, and plays a sound on a remote computer to alert thirsty coworkers to
the fact. Sound isn't only limited to alerts, however: the XPOD[9] project
is an activity-aware music player, which tailors the music being played to the
user's current activity based on their past ratings. This type of activity-aware
device presents a much greater level of personalisation than previously possible,
and making this type of customisation available to mobile telephone users and
application developers will surely result in many new applications.

6 Inferring activity

There are three general phases in most context-aware systems: a sensing compo-
nent, which reads or receives raw sensor data relating to the user's environment
or activity; a feature extraction component, which analysis the sensor data and
identi�es a set of features from that data; and a classi�cation component, which
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uses the extracted features to reason about the user's activity[7]. Each of these
components will be expanded on below. Depending on the method of classi-
�cation, some initial or continuous training may be required, and this is also
considered below.

6.1 Sensors and devices

At the basis of activity-recognition are the physical hardware sensors. The most
commonly used sensor is the accelerometer, which outputs the acceleration of the
sensor1 along a certain axis. There is extensive research on using accelerometers
to classify activities such as walking [18, 11] (including whether or not the
subject is walking on �at ground or up and down stairs [6]), running [11], falling
[18], sitting [18, 11], cycling [11], etc.

Smartphones also come equipped with a microphone and GSM stack (prerequi-
sites for a telephone conversation!), and commonly a camera, geolocation API
(usually backed by GPS) and Bluetooth stack. With the exception of the latter
two, these types of sensors are not particularly well explored for their use in
context-aware systems at present. It is easy to reason how each would be useful
- a microphone can reveal the ambient noise, which could indicate the di�er-
ence between sitting in a library and a bar; the camera likewise can reveal the
lighting conditions (if the device is not in a pocket or bag). The GSM stack can
provide rough location information and also a signal strength to one or more
cell towers; the signal strength will vary both with the user's proximity to the
cell tower and the environment around them - being inside will degrade the
signal more than being in open air, for example - so may provide vital clues to
a context-aware system. One aspect of this project will be to research how the
microphone, camera and GSM stack can be used to enhance existing activity
classi�cation algorithms.

Current research on location information and Bluetooth device proximity is
summarised in section 8 (p17) and 16 (p30) respectively.

6.2 Feature detection

It is not possible to reason directly about raw sensor inputs, so the next step
in inferring activities is to extract useful features from the raw input. Features
are usually mathematical properties of the input data, such as the di�erence
between the minimum and maximum data point in a given time frame. Most
classi�ers use an extremely large number of features - [13] detect 562 di�erent
features from their inputs.

Some of the more commonly used features in activity-recognition systems are:
mean, standard deviation, energy, entropy, correlation between axis, and dis-
crete FFT coe�cients[16]. Obviously, not all features are of equal value. FFT
coe�cients are generally very good indicators of activity, but the ideal coef-
�cients and window sizes vary depending on the exact activity that is being

1 and thus the device to which it's attached, and therefore the person using the device
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detected. Likewise, the choice of other features to give the best recognition rate
varies depending on the activity being detected[16].

As the sensor data is received continuously, it needs to be partitioned somehow
before features are extracted. Most implementations use a sliding window ap-
proach with a 50% overlap between windows[3]. A window size of 10 seconds
with a 50% overlap would result in one set of features being computed every 5
seconds. The window size is normally selected to correspond to a pre-de�ned
number of samples to enable fast computation of certain features - most notably
FFTs[3].

One challenge will be determining a set of features that are robust enough
to perform activity analysis on, but are su�ciently inexpensive to calculate
continually on a mobile device, where CPU speed is limited and excessive usage
results in undesirable higher battery consumption.

6.3 Training

In order to meaningfully classify and label activities, some kind of training
generally needs to be performed beforehand. The choice of classi�er a�ects how
much o�ine analysis has to be done on the training set, and whether or not it
can be adapted at run-time.

One might expect that training would best be performed in a controlled envi-
ronment, to reduce external in�uences on the user, but subjects in a laboratory
setting are much more self-conscious about their movements, and this manifests
itself in the data collected. Walking in a laboratory tends to produce accel-
eration data showing a consistent gait cycle which can be split into distinct
phases, whereas walking in an uncontrolled setting produces data showing large
�uctuations in gait phases and length. This means that classi�ers trained on
laboratory data may achieve a much lower accuracy when deployed in natural
conditions[3].

6.4 Classi�cation

The classi�cation step involves feeding the features for frame into some kind of
machine learning algorithm which can, using training data2, determine which
activity the feature-set most like represents. There are many di�erent algorithms
that can be used to perform the classi�cation, some of which are discussed below.

6.4.1 Decision trees

Decision trees are possibly one of the simplest approaches possible[15]. A tree
is constructed such that each node contains a test function, with branches for
each possible discrete outcome of the function. This allows data to be classi�ed
with a �divide and conquer� approach. While high accuracy is possible in some
circumstances[15], there are several drawbacks to decision trees: a plain decision

2 and any o�ine analysis made of that data
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tree has no way to model uncertainty - in an activity-aware system there will
always be a degree of uncertainty as to the classi�cation, and being able to mea-
sure this is an important tool. They also have an inductive bias which leads to
a preference for the most general solution, and in most cases this generalisation
causes many false results[28].

Decision trees require the structure of the tree and the test functions for each
node to be determined during training. They do not lend themselves to minor
on-the-�y modi�cations or new activities that are not part of the training set.

6.4.2 Neural networks

Neural networks are based on an extremely simpli�ed model of the brain. The
network consists of layers of neurons, and each neuron performs a simple arith-
metic operation on its inputs. This normally consists of taking each of its
inputs, multiplying it by a weight, and then summing all of the weighted inputs
together; the resulting �gure then becomes the neuron's output, and the input
to one or more nodes in the next layer.

A network consists of a layer of input neurons, a layer containing one or more
output neurons, and one or more layers of �hidden� neurons in between. The
number of �hidden� layers, and the number of neurons within those layers must
be chosen before training of the network begins. The training process will then
determine the weights for each link in the network. The choice of number of
layers poses a problem when designing a network, as too small a number can
cripple the power of the network, but too large can cause it to be too expensive
to evaluate and can possibly lead to it memorising erroneous data[9].

Neural networks, however, do provide good accuracy and could potentially (al-
though not easily) be modi�ed on-the-�y to cope with new activities.

6.4.3 Genetic algorithms

Genetic algorithms use the principle of natural selection to 'evolve' a solution
to a problem. A set of random solutions are created, and a pre-de�ned �tness
function is used to determine their relative worth. The best solutions are then
combined together to produce the next generation of solutions, in a manner
roughly analogous to reproduction in animals. Small �mutations� are also intro-
duced into each generation to counter the e�ect of local maxima being reached.

Genetic algorithms can be combined with other techniques such as neural net-
works - the weights in the neural network can be �evolved� using genetic algo-
rithms to create a neural network which is good as satisfying the �tness function.

The drawback of genetic algorithms is the need for a �tness function - the
network will only ever be as good as the �tness function, and if you have a way
to de�ne what makes a good network you could in most cases hardcode the
solution instead of evolving a network to satisfy it.
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6.4.4 Instance-based learning

Instance-based learning (IBL)[34] algorithms are a class of �lazy� algorithms.
They perform classi�cation based on previously observed instances that have
already been classi�ed. There is no training required for IBLs, they're extremely
adept at adapting to new scenarios, and they have a very low error rate[9] which
makes them ideal for activity-recognition.

One particular type of IBL algorithm which is frequently seen in activity-aware
research is the K-Nearest Neighbour (KNN) algorithm[12]. With the KNN
algorithm, each sample is treated as a vector, and the distance3 between the
sample and the existing instances is calculated. The sample is then classi�ed
according to the classi�cation of the majority of its k nearest neighbours.

One drawback of IBLs is that each new instance tends to be remembered for
future use, which eventually results in large amounts of memory consumption
and complexity when comparing distances of new samples. This can be partially
overcome by only storing instances which would a�ect the classi�cation of new
samples[34].

The KNN algorithm can be easily extended to support dynamic classi�cation of
new types of activities - if a sample is not within a certain distance of su�cient
other samples, it can be classi�ed as a new type of activity.

6.4.5 Conclusion

There are numerous machine learning algorithms available and suitable for use
in activity classi�cation tasks. There has been a lot of research into their use,
and all of the algorithms discussed have produced good results. Because of
the lack of need for any training, however, the K-Nearest Neighbour algorithm
appears to be the most promising for a mobile device. Any algorithm that
needs explicit training prior to classi�cation would almost certainly require a
desktop application or a remote service to analyse the data, as it typically
requires large amounts of memory and expensive computations. This either
makes the application extremely cumbersome for the user (they have to connect
their phone to a computer, transfer a �le, obtain and run a separate application,
then transfer some �le back), or puts a large resource burden onto the distributor
(having to remotely analyse all of the data from all users would require dedicated
hardware for any more than a few users).

7 Mobile telephones

It's hard to overstate the ubiquity of mobile telephones at present. In 2003,
over a billion mobile telephones were sold - six times as many as the number
of personal computers[10]. In 2007, this same �gure describes the number of
cameraphones sold[24], clearly representing a substantial growth in sales and ad-
vancements in the technology. In fact, mobile telephones are the fastest adopted

3 the euclidean distance is usually used, but any metric will su�ce
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technology in human history[10]. This ubiquity, coupled with the fact that mo-
bile telephones are comfortably carried around on a daily basis by most of their
users, makes them a very attractive alternative to more traditional platforms
used for activity-aware research, which typically involved bulky or inconvenient
apparatus that was expensive to manufacture[27] and made users very self-
conscious.

7.1 iPhone

There have been several published works related to activity-recognition on the
iPhone. The similarity between iPhone and Android platforms means that many
of the concepts developed for or used on the iPhone are applicable to both.

7.1.1 iLearn

iLearn[27] is a suite of three tools - iLog, iModel, and iClassify - which
together allow for real-time classi�cation of low-level activities. iLog is run
on the user's iPhone and allows the user to specify which activity they will be
performing. The application then records raw sensor data from the iPhone's
three-axis accelerometer and 124 features computed from this data in real-time.
The data is then stored on the device, annotated with the selected activity.

The training data collected by iLog is then transferred to a desktop computer
where iModel uses a Naïve Bayesian Network (NBN) to create a model which
can be used to classify future input. The choice of NBNs was based on their
ability to classify a set of trial data correctly, and the low computational cost
of classifying data once the model has been generated.

Once the model has been created, it is transferred back to the device where it
is used by iClassify. This provides an API for other applications, and allows
them to register for a callback which it publishes the user's current activity to
every second.

Unfortunately, neither the source code nor the API are published. The inability
to run background processes on the iPhone suggests that any �API� would have
to be more like a framework where the third-party developer has to re-engineer
their application to use the iClassify application as a base. This is undesir-
able as it makes it extremely di�cult to adapt existing applications to use the
activity-aware API, and is a very cumbersome way of providing what could be
a very minor piece of functionality for the application.

7.1.2 Evaluation

[20] present an evaluation of the iPhone for use in �people-centric sensing appli-
cations�. One of the major drawbacks highlighted is that the iPhone does not
support applications which run in the background. This means that any appli-
cation wishing to perform continuous real-time activity detection would need to
run as a foreground process, preventing the user from using the device for any
other function.
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The research also shows that the computational compatibility of the iPhone is
more than su�cient to perform the necessary calculations for a typical activity-
recognising application, which suggests that any modern smart phone would be
capable of these.

7.1.3 Multitasking

Since the evaluation presented above was written, Apple have announced a new
version of the iPhone OS which supports pseudo multi-tasking. However, this
form of multi-tasking only allows a limited set of prede�ned functions to be
performed, such as playing audio or monitoring location. This still prevents
continuous real-time activity detection from taking place in a useful fashion.

Further, because of the homogeneous hardware and memory model employed by
the iPhone, applications typically make assumptions about the amount of free
memory that will be available to them. This prevents any real implementation
of multi-tasking, as background apps would infringe on this �xed amount of free
memory. It is therefore unlikely that future updates will enable true, uninhibited
multi-tasking, as it would break compatibility with a lot of existing applications.

7.2 Android

While the Android platform is relatively new, it is rapidly gaining market share
on the more established mobile operating systems. A December 2009 survey[1]
shows that 21% of respondents want their next smartphone purchase to run
Android, a 350% increase from the same survey conducted three months prior.
This is compared to the iPhone, which dropped 4% to 28% in the same time
period. Gartner, a respected IT research �rm, predicts that by 2012, Android
will be the second most popular mobile operating system globally[2].

In addition to its rapidly increasing popularity, the Android platform o�ers
several advantages over the iPhone platform. Most notably is the ability to run
background processes (called services), which will allow a classi�er application
to run without interfering with the user's normal use of their mobile telephone.
In addition, the Android OS provides access to the Bluetooth and GSM stacks,
allowing for data from both to be used for activity detection.

The ability to run a background process will enable a proper API for sharing
activity data with other applications, which will allow third-party developers to
make their applications context-aware with relatively little work on their part.
This is extremely desirable as it will allow rapid prototyping of applications,
which will hopefully lead to innovative new uses of activity classi�cation.

While it is purported[11] that there is research being done on bringing activity-
awareness to Android platforms, there does not seem to be any work published
on this matter or any applications available to support it. While there a small
number of self-proclaimed �context-aware� applications for Android, this context
is almost exclusively limited to geolocation. This project will therefore produce
one of the �rst publicly available activity-aware applications for the Android
platform.
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8 Location analysis

Location-based services are currently undergoing an �explosion�[4], thanks to im-
provements in technology, and greater openness on the part of service providers
and handset manufacturers. All modern smartphone platforms have a geolo-
cation stack, usually backed by a GPS chipset and in most cases augmented
with either a database of known cell tower locations, or a map of known WiFi
network identi�ers and locations, or both. The two databases allow for rough
geolocation when GPS is not available, or for greatly decreased lookup time
when a GPS lock is available.

However, while the geolocation stack is a rich source of data, it is a poor source
of information. A latitude/longitude pair may describe the user's exact loca-
tion, but a user would be hard-pressed to tell the di�erence between the lati-
tude/longitude of their home, place of work, or of somewhere in between the two
with no real signi�cance. A great deal of research has therefore been devoted
to detecting meaningful locations from GPS traces.

�Place recognition� has two phases: learning and recognising. An initial learning
phase analyses a sensor log and segments the data into places where the device
is stable (stationary), and designates this as a �waypoint�. It then merges �way-
points� that appear to identify the same place being visited multiple times. The
second phase uses these learned waypoints to recognise when the device is re-
visiting a place, and therefore also when the device is not visiting a previously
known place (for example when it is moving between two)[14].

Unfortunately, quite a lot of research into location analysis uses GPS �blackspots�
to identify useful places[22, 17]. With older GPS chipsets, the satellite signal
would be lost when the user entered a building, and this allowed an inference
that the current location was probably a place of interest. However, modern
GPS chipsets receive a signal in most indoor locations. It is possible that a
decrease in signal strength or number of locked satellites may still occur, or
that GSM signal strength could be used instead, but these ideas have not been
widely explored at present.

There is, however, plenty of research relating to the use of location data out-
doors. One application[17] learns not only the user's frequently visited places,
but the method of transport used between them and the typical routes taken.
It can then o�er instructions showing the user how to go from place to place,
or issue alerts if the user appears to be going the wrong way (by getting on the
wrong bus, for instance). The ability to correctly infer the user's destination
would be extremely useful in a context-aware system: a user walking to do their
grocery shopping is almost certainly going to want to interact with their phone
di�erently than a user on a bus going to work.

9 Bluetooth

The user's context depends on not only what they are doing, where they are
doing it, but also who they are with. Sitting and eating lunch with a man-
ager is quite a di�erent context to sitting and eating lunch with a spouse. It
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would therefore be desirable to be able to identify between di�erent people when
performing context analysis.

One of the few ways that a mobile telephone can identify other people is by
searching for their mobile telephones. This can be done by scanning for Blue-
tooth devices, which involves broadcasting a �device inquiry� message; if a device
chooses to answer the inquiry, it discloses its unique MAC address and device
class4. Unfortunately, this requires the person to not only be carrying a mo-
bile telephone, but a Bluetooth-enabled model, and for them to have con�gured
their device to have Bluetooth enabled and to be �visible�. A study in 2004[10]
found that only 1 in 150 people had such a con�gured device on a university
campus. This �gure will undoubtedly be greater now, and may well be greater
when in public, but it highlights that only a handful of people may be detectable
via their Bluetooth devices.

A study in 2006[21] used a similar technique to monitor the social context of
the user, introducing the idea of �familiar� people, �unfamiliar� people and �fa-
miliar strangers�. These labels were applied based on the number of times their
Bluetooth devices were detected 5. While the de�nition of �familiar� and �un-
familiar� are quite obvious, �familiar strangers� is a new class of people used to
describe those who the user encounters repeatedly, but doesn't interact with.
This may include neighbours that are passed on the street, or fellow commuters
on a journey into work. The number of people in each of those groups (and any
changes in those numbers) can be used to infer how �comfortable� the user feels
with their social context, and whether their current activity is part of a normal
routine or is novel.

This research has, to date, not been readily combined with activity-aware appli-
cations, and this project will aim to integrate the results of Bluetooth scanning
with �classical� activity classi�cation techniques and to evaluate whether it pro-
vides any bene�t.

10 Power management

One major consideration when deploying an application on a mobile device is the
amount of power it will use. An application constantly polling any one sensor
can reduce battery life signi�cantly, and an application which kept all available
sensors active (in addition to doing CPU-heavy analysis on them) would drain
the battery in a typical smartphone in a matter of hours. A context-aware
application is not very useful for a user if they can only use their telephone for
an hour or two before it needs recharging!

One solution[33]is to only use one or two sensors to monitor the user's activity
until it appears to be transitioning. For example, if the user is believed to be
walking, the application only needs to periodically check either the accelerom-
eter (to con�rm the user is still making walking motions) or GPS (to con�rm
the distance traveled is still consistent with walking) to know that their activity
has not changed. As soon as the user's behaviour becomes inconsistent with

4 the device class tells us whether the device is a computer or a mobile telephone, for
example

5 and by extension the number of times the user had come into contact with them
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walking, the application can bring other sensors online until it has successfully
reclassi�ed the activity, and then resume monitoring with minimal sensors.

Another option[33] (which can be used in conjunction) is to only enable sensors
for a short amount of time, and then sleep for a period before reactivating them.
The �duty cycle� suggested for accelerometers is 6 second of sensing followed by
10 seconds of sleeping. The six second window is enough time to allow for
capturing a full range of motion (several complete strides) if the user is walking
or running, and then the ten second sleep stops the accelerometer using battery
power until the next cycle. This process obviously means that a sudden switch
in activity will not be noticed immediately, but a delay of a few seconds is
acceptable as most activities will last for minutes or longer.

The battery life on modern smartphones rarely exceeds 24 hours of typical use,
so it is extremely important that any applications developed for this project does
not signi�cantly reduce this. A balance between prompt detection and noti�ca-
tion of activity changes and battery use by sensors and processing algorithms
will need to be found.
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Part III. Activity classi�cation

11 Sensor Logger application

The primary component of context that this project aims to expose is the user's
activity. The main factor in determining a user's activity is the data retrieved
from the device's accelerometers. This gave rise to the project's �rst published
application, titled Sensor Logger. The �rst version of Sensor Logger
consisted of a single activity containing a large amount of text describing the
project, an editable text �eld where the user could name their activity, and a
button which initiated logging.

Once the user tapped the 'Start' button, the application launched a service
which registered with the device's SensorManager and requested fast updates
from both the accelerometer and the magnetic �eld sensor. Every 50ms the last
value received from each axis on each sensor was written along with a timestamp
to a �le on the device. After 1024 samples were collected (a total of around 51
seconds), the service launched an uploader service and terminated itself. The
uploader service read the �le from the device's �ash memory, opened a HTTP
connection to the project website, and submitted the data to a PHP script. The
PHP script in turn stored the data in a MySQL database. Figure 1 on page 21
shows the relationship between the various components involved in the Sensor
Logger application.

11.1 Market and user input

The Sensor Logger application was made available on the Android Market, under
the name 'Sensor Logger Test'. The description brie�y outlined the aim of
the project and emphasised that the Sensor Logger was a data gathering tool
and didn't really provide any utility to end users. Despite this, over 1,000
submissions were received from anonymous users. While some of these did not
provide any use for the reasons discussed in Section 12, a number were manually
classi�ed and used to generate the model used in the �nal application.

Version 0.2.0 of the Sensor Logger application introduced functionality where it
classi�ed the activity on the device before asking the user to name it (see Section
14). This allowed the submitted data to be augmented with an extra �eld saying
what the activity classi�cation algorithm thought the activity was. If the user
con�rmed that the activity was correct, the manual activity annotation was set
to 'UNCLASSIFIED/NOTCORRECTED'.

Figure 2 on page 22 shows a breakdown of all the results that were received from
version 0.2.0 or later of the application. The raw data is included in Section H.
Nearly half of all the submissions were classi�ed correctly, and only 15% were
classi�ed incorrectly. A large proportion of the submissions either had no text at
all or had an activity that didn't make sense, such as �sjxjxgzog� or �it is a cat!�.
There were also 30 submissions where the user had annotated the data with an
activity that makes sense, but which isn't supported by the Sensor Logger. The
majority of these were 'Sleeping' - but it is unclear in these circumstances what
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Fig. 1: Sensor Logger component diagram
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Fig. 2: Analysis of user-submitted Sensor Logger results

the user is actually doing with their device; if it is left on a bedside table, for
example, then there is no way to distinguish the actual activity of the user.

Figure 3 on page 23 shows a breakdown of the results deemed incorrect. A large
majority of these incorrect results occurred when the user was sitting down, and
the Sensor Logger incorrectly classi�ed them as being in a vehicle of some sort.
Of the remaining incorrect entries, 15% correctly classi�ed the correct top level
in the hierarchy (such as 'VEHICLE' or 'WALKING') but then misclassi�ed
further levels; the remaining 25% incorrectly classi�ed this top level as well.

11.2 Exception handling

Early user feedback on the Android Market indicated that the Sensor Logger
application was �Force Closing�. This is a reference to the dialog that appears
when an application throws an unhandled exception and stops running. The
Market provides no facilities to engage with users, and there were no force close
issues present on either the Android emulator or several physical devices the
application was tested on, so it was di�cult to determine the cause.

In order to gain more data on this issue, an UncaughtExceptionHandler
was written and appropriately registered with the application's thread. The
exception handler is invoked by the Thread class any time a thread dies due to
an unhandled exception. The implementation for the Sensor Logger application
copied the details of any exception (including the reason and full stack trace)
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Fig. 3: Breakdown of incorrect results

into a �le, and then uploaded the �le with some meta-data to the same website
which was setup to handle uploading of accelerometer data.

Soon after an updated version of the Sensor Logger was published including
the new exception handler a report was uploaded. The stack trace indicated
that the problem was a NumberFormatException when trying to convert
the device's IMEI number into a long. After some brief research it became
apparent that CDMA devices do not use IMEI numbers, but instead MEIDs
(Mobile Equipment Identi�er). MEIDs are hexadecimal instead of numerical, so
obviously cannot be converted directly to a numeric type. The code was adjusted
to decode MEIDs properly and a new version of the application published, and
the error reports ceased.

From a development perspective, the utility of being noti�ed directly of excep-
tions is immense. It is very di�cult for users to �nd the details of an exception
following a force close, so extremely unlikely that anyone will report problems in
su�cient detail for them to be �xed. The exception handling code was therefore
abstracted into a common class, and included in every application released as
part of this project.

12 Manual classi�cation

Once the sensor data was logged in the database, a web interface provided a
graphical representation of the acceleration and magnetic �eld readings. It also
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Fig. 4: Website for manually classifying windows
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allowed a handful of authenticated users to manually classify overlapping �win-
dows� of 128 data points. The classi�cation portion of the website is shown in
Figure 4 on page 24; it shows the �rst six overlapping windows for one sub-
mission, with the third window highlighted because the user's cursor is over
the corresponding dropdown. Users of this system could de�ne activities in a
hierarchical fashion, starting with two root nodes - 'CLASSIFIED' and 'UN-
CLASSIFIED'. Early data submitted resulted in a classi�cation hierarchy of:

• UNCLASSIFIED

� PENDING (not yet manually assigned)

� UNKNOWN (unable to determine actual activity from user label)

� DNI (short for �Do Not Include�, for windows which appear erro-
neous)

• CLASSIFIED

� WALKING

∗ STAIRS (not used in itself)

· UP
· DOWN

� IDLE (not used in itself)

∗ SITTING

∗ STANDING

� VEHICLE (not used in itself)

∗ CAR

∗ BUS

� DANCING

It was observed that many samples had erroneous data either at the start or the
end of the recording. This was a result of the user putting the device away in a
pocket (as instructed) or picking it back up to check the results. A classi�cation
of 'DNI', short for 'Do Not Include' was therefore introduced which allowed
the erroneous windows to be summarily excluded from later analysis. Later
iterations of the Sensor Logger application included a 10 second delay at the
start to give the user time to put the device away, and sounded an audible alert
at the end, which reduced the number of records submitted with bad data.

Another problem with the user submitted data was that some activity descrip-
tions didn't make sense. With the earliest versions of the Sensor Logger, a
signi�cant number of users entered their own name or a nonsensical string into
the textbox labeled �Activity name�. This suggested that users were either not
reading or misunderstanding the instructions. A classi�cation for 'UNKNOWN'
was introduced to facilitate removal of the records where classi�cations couldn't
be inferred from the activity name.
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13 Feature extraction

Once a reasonable sample of data had been recorded, the PHP script was mod-
i�ed to allow exporting of all classi�ed windows. It produced a plain text �le
containing the sensor readings and timestamp for each of the 128 points in
each window, as well as the manually-applied classi�cation. It did not include
information as to which windows were from the same sample, or the original
user-supplied activity name. A small sample of this data is included in Appendix
Section F.

A Java program was written which imported the exported data. A series of
'feature extractors' were written. These calculated the:

• maximum

• minimum

• range

• median

• mean

Each of these extractors was run over the set of 128 data points from each axis
on each sensor, giving a total of 30 features. It was planned to add further
features including Fast Fourier Transforms and energy, as suggested by multiple
papers consulted in background research.

The program was modi�ed to export the features and classi�cation of each
window in ARFF (Attribute Relation File Format). This is a format used by
Weka, a popular data mining suite developed by the University of Waikato. A
small sample of the ARFF data is included in Appendix Section G. The ARFF
�le was imported into Weka and analysed.

Inspection of a graphical representation of the correlation between mean and
activity showed that in some samples the mean was negated but of a similar
magnitude to other samples. This can be explained by the device being orien-
tated in a di�erent manner when the samples were taken - a static device would
record a downwards acceleration of 9.8m/s if it is upright, but -9.8m/s if it is
upside down. An extra feature extractor was therefore added which calculated
the absolute mean.

With these features, it was found that Weka could correctly classify activi-
ties with an accuracy of in excess of 95% (measured by holding back 1

3 of the
training data) using a K-Nearest Network algorithm with K = 1. It was there-
fore apparent that more complicated feature extraction techniques such as Fast
Fourier Transforms or Energy would not be necessary to achieve a very high
classi�cation rate.

A lot of time was spent attempting to reduce the already small set of features
further. Every feature that had to be calculated would result in more CPU usage
when implemented on the device, which would in turn reduce battery life by
a greater amount. This was done by a combination of experimentation based
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on educated guesses and assumption, and Weka's built in �select attributes�
functionality.

In the end, a similar accuracy was achieved using only four features. These
were the absolute mean and range of the X and Y axes of the accelerometer.
No data at all was used from the magnetic �eld sensor or the Z axis of the
accelerometer. This is an very useful result as the features are extremely cheap
to calculate, and almost trivial to implement on the device. No libraries are
needed to perform advanced mathematical functions, and individual samples
do not need to be stored in memory until a complete window is obtained - the
minimum, maximum and total of samples from the two axes simply have to be
recorded. This is, perhaps, the �rst time activity inference has been performed
successfully with such a small number of features.

The application was again modi�ed to read the exported data, calculate the four
interesting features, and create a mapping of data points to activity. This map
was serialised into a �le using an ObjectWriter, which allows it to be read
on both desktop platforms running a standard JVM, and the Android platform
which contains compatible serialisation technology.

14 On-device classi�cation

The serialised model was bundled with a new version of the Sensor Logger ap-
plication, along with a completely redesigned user interface. The application
now consisted of a series of activities: on opening the application, the user is
presented with an introduction activity which explains what the application
does and the aims of the project; when they click the 'next' button a 10 second
countdown is displayed with the instruction to put the phone away repeated.
During the data collection period an animated pattern of dots is displayed so
the user knows the application is still working if they look at it. When data
collection is completed, the device adds a noti�cation with sound and vibrate
settings, and displays another progress screen while a background service anal-
yses the data. The result of the classi�cation is then displayed prominently and
the user is presented with two buttons - one to con�rm the classi�cation and
one to reject and correct it. The on-device classi�cation (and any correction
made to it) is submitted along with all the data previously submitted. Finally,
the user is then presented with a 'Thank you' message, and a unique link to the
project website where they can view graphs of their activities.

15 Activity Recorder application

The Activity Recorder application was the second application published on the
market. In contrast to the sensor logger, it only records the two relevant axes
of the accelerometer, and all data is kept in memory instead of being written to
a �le.

The activity recorder consists of a background service which records 128 samples
of sensor data once every 30 seconds. At all other times, the accelerometer is
not accessed to conserve battery power. The samples are then classi�ed using
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the same model as the Sensor Logger application, and the resulting activity is
appended to a list. Consecutive samples which are classi�ed as the same activity
are merged together.

The user interface displays a list of activities, along with their start time and
duration in minutes or hours.

15.1 Acquiring data while screen is o�

The activity recorder brought to light a problem that was discovered to be
present in the sensor logger as we, but hadn't been noticed at the time. When
the device's screen was turned o�, both applications stopped receiving sensor
events. Some research and experimentation revealed that in order to continue
receiving sensor data when the device went to �sleep�, the application had to
acquire a partial wake lock from the system's power manager. A full wake lock
keeps the device fully awake with the screen on, whereas a partial wake lock
allows background processing to continue while the screen is deactivated.

Once the applications were modi�ed to acquire a partial wake lock, they both
received sensor data as expected with the screen o�. However, testing on An-
droid 2.0 (�Eclair�) devices still showed the original problem. The cause of this
was a change in the functionality of the sensor manager introduced between
1.6 and 2.0 which prevents sensor data being received when the device is sleep-
ing, regardless of any wake locks held. An issue raised on their o�cial issue
tracker revealed that the Android developers considered this a bug, and that
it would be recti�ed in a future version. When Android 2.2 (�Froyo�) was re-
leased, testing revealed that the issue was indeed �xed, and all applications
worked as expected. There therefore exists an incompatibility with handsets
running Android 2.0 and 2.1.

15.2 Aggregating classi�cations to smooth results

Another problem raised by the Activity Recorder application is that of occa-
sional incorrect results. Because each data was only sampled for �ve seconds
once a minute, it is possible that during those �ve seconds the activity be-
ing performed does not lend itself to proper classi�cation of the user's actual,
medium-term activity. For example, if a user is walking for 20 minutes and hap-
pens to stop several times to cross roads, samples while the user is stopped will
(correctly) indicate that they are standing still, but for all practical purposes
they are still engaged in the act of walking. Similarly, when traveling in a car
it is possible for occasional samples to be misclassi�ed as traveling by bus, or
vice-versa.

To combat this problem, an activity �aggregator� was introduced. This accepts
classi�cations and uses them to adjust a set of internal probabilities for each
possible (sub-)classi�cation. The algorithm increases the likelihood score of each
component in a classi�cation by a constant amount, and reduces all other com-
ponents by a �xed ratio. This smooths out results, and allows for classi�cations
not directly supported by the model when the data is unclear and alternating.
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This behaviour is most useful when traveling by vehicle and classi�cations al-
ter between �car� and �bus� - both contributed positively to the likelihood of
�CLASSIFIED/VEHICLE�, and this ends up being the result presented by the
aggregator.
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Part IV. Other sensors

16 Bluetooth

Being able to identify who the user is accompanied by would be extremely
bene�cial in a context-aware system. One of the few ways to do this at present
is to monitor the presence of other user's mobile telephones by scanning for
visible Bluetooth devices. As discussed in Section 9, if su�cient devices are
visible, users can be classi�ed according to whether they are familiar, strangers,
or familiar strangers. This provides a great deal of context to the user's activity.

Before this Bluetooth algorithm can be implemented, it needs to be determined
whether there are a su�cient number of discoverable devices to make it worth-
while. As with any radio transceiver, a lot of battery power is consumed when
Bluetooth is enabled and the device is actively scanning for others. This means
that if there are insu�cient discoverable devices, the cost of enabling and scan-
ning for Bluetooth devices would outweigh the bene�ts. As mentioned previ-
ously, there is no use in a very accurate context API if the user's battery only
lasts for a few hours.

To determine the utility of scanning for Bluetooth devices, a group of three
volunteers were asked to manually enable Bluetooth and scan for devices using
the built in functionality exposed in Android's settings screens. It was planned
to create an application which could scan and classify devices appropriately but
the Bluetooth API is only exposed to user-space applications in version 5 of the
Android SDK, which corresponds to the �Eclair� or 2.0 release; at the time of
the experiment, only one of the three volunteers was using a device for which
Eclair was available. This also means that adding Bluetooth support would
have a further cost of having to either limit access to pre-2.0 users, maintain two
separate versions of the application, or spend extra time developing a solution
which would attempt to use the Bluetooth API if and only if it is available.

Environment Devices People Discoverable Familiar Familiar Strangers Strangers

Car 0 1 0% 1 0 0
Bus 1 20 5% 0 0 20
Street 2 15 13% 0 0 15
Bar 2 12 17% 1 1 10
O�ce 0 6 0% 5 1 0
O�ce 0 4 0% 4 0 0
Home 0 1 0% 1 0 0
Home 0 2 0% 2 0 0
Lecture 5 80 6% 10 70 0
Meeting 1 6 17% 6 0 0

Restaurant 2 22 9% 1 2 19
Supermarket 2 1 200% 0 0 1

Tab. 1: Bluetooth scanning results

For the experiment, the users were asked to record the number of visible Blue-
tooth devices, their environment and the estimated number of people around
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them. They were also asked to classify the people into rough groups of �familiar�
(such as co-workers, family and friends), �familiar strangers� (people they see
regularly but are not particularly familiar with), or �strangers�. The results are
itemised in Table 1 on page 30.

The results show that in general there is a very poor proportion of devices that
are visible. The results also suggest that Bluetooth would be a poor method
for �nding �familiar� people, as the situations with very few strangers generally
had almost no discoverable devices. There are several possible reasons for the
low proportion of devices: modern phones tend to default to having Bluetooth
switched o� for reasons of battery life and user privacy, and even when enabled
the devices tend to default to being non-discoverable. In fact, Android devices
will only allow the user to make the device discoverable for 30 seconds at a time
- the setting is automatically reverted after this period. Another consideration
is that the three volunteers are all involved in extremely technology-focused set-
tings: one was a student studying a computing course, one a software engineer,
and one a systems administrator. Whether or not these technology-rich settings
would arti�cially in�ate results (more technology means more discoverable de-
vices) or de�ate them (more tech-savvy users mean fewer needlessly enabling
Bluetooth discovery) is unclear.

17 Microphone

Reading raw data from the Microphone on Android is relatively straight forward
thanks to the built-in AudioRecord class. This allows raw data to be retrieved
directly into an array of bytes, where it can then be analysed. A class was written
which constructs an AudioRecord instance, retrieves a sample of data, and
calculates the sound pressure level (SPL). The SPL can be used to measure the
ambient volume of the environment the device is in - for example, a quiet room
would typically have an SPL of 20-30 dB, a television might raise that to the
level of 60 dB, and a busy road could be up to 90 dB. SPL is calculated using
the formula Lp = 20log10(

prms

pref
). pref is the reference sound level and is usually

taken to be 20 micropascals, which is the limit of human hearing; prms is the
root mean square pressure being measured.

While the class was able to correctly calculate the SPL, it is not used in any
of the published applications. The original intention was to use SPL to assist
in activity inference, but as shown in 11.1 the accelerometer alone achieves
a satisfactory classi�cation rate on its own. The large majority of incorrect
classi�cations revolved around the user sitting down and, as sitting is such a
universal activity (i.e., it's performed everywhere), knowing the ambient SPL
will not help in this classi�cation.

While there are certainly use cases for knowing the SPL (the most obvious being
increasing or decreasing the ringer volume in proportion to the SPL to ensure it
can be heard), most of them do not involve any other form of context that this
project is aiming to expose. It was therefore decided to not include the SPL
data in the main context API.
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18 Camera

The aim of incorporating data from the device's camera was to determine the
ambient lighting conditions. It could possibly then be inferred whether the user
was in natural or arti�cial light, or in darkness. However on consultation with
a group of �ve prospective users it became clear that at the times at which the
device would be classifying context, it would almost always be inside a pocket
or a bag. The only times the device would be able to detect lighting conditions
would be as the user was using it (which is too late as the device should have
already adapted to the user's context) or when the device had been left on a
desk or shelf. It was therefore decided to not include camera data at this stage
of the project.
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Part V. Places

19 Use of GPS/GSM blackspots

As discussed in Section 8 a lot of existing research into identifying interesting
places relied on the fact that with hardware that is now 5-10 years old, you
could not reliably get a GPS signal indoors. Thus whenever the user remained
somewhere without a GPS signal it was likely that they were spending time
indoors, and therefore their current location would be noteworthy.

Unfortunately, modern GPS hardware is much more sensitive and can quite
easily get a signal indoors in most circumstances. One possible solution to
this was to monitor the strength of either the GPS lock or the GSM signal, and
attempt to determine whether or not a di�erence was noticeable. An experiment
was therefore conducted to record the GPS and GSM status for multiple indoor
and outdoor locations.

Location GSM strength GPS satellites GPS time to �x

Indoors -101 dBm 10 <1 sec
Outdoors -101 dBm 8 <1 sec
Indoors -71 dBm 6 2 sec
Outdoors -67 dBm 7 2 sec
Indoors -67 dBm 11 <1 sec
Outdoors -67 dBm 10 3 secs
Indoors -67 dBm 10 <1 sec
Outdoors -43 dBm 10 <1 sec

Tab. 2: GPS and GSM strengths

At four separate indoor locations, the third-party GPS Status application was
used to observe the number of satellites the device was receiving a signal from,
and the amount of time it took to acquire a �x on all of those satellites. The
GSM signal strength as reported by the device's built in debugging tools was
also recorded. The device was then moved outdoors to the nearest appropriate
open area (footpath, outdoor seating area, etc), and the process was repeated.
The results are summarised in Table 2 on page 33.

While the indoor GSM strength is lower than the corresponding outdoor strength
in two out of the four samples, it is still signi�cantly stronger than the weakest
recorded indoor or outdoor signal. In the other two cases the signal strength
was the same for both indoors and outdoors. The GSM signal strength therefore
seems to be a poor indicator of whether or not the user is indoors - it would
have to be continually monitored to detect a drop in signal strength, and the
(limited) experimental data shows that this would have a 50% false negative
rate. The experiment does not allow us to reason about false positives, but it
is easy to imagine that many circumstances would give rise to drops in signal
strength - the most obvious being moving away from the cell tower.

The GPS results show even less correlation between indoor and outdoor read-
ings. In two out of the four locations, the indoor test identi�ed more satellites
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than the outdoor test - the opposite to what would be expected. This could
be because the indoor locations were typically above ground level - the extra
altitude may be more bene�cial to obtaining a lock than the obstruction of
the building itself. It seems more likely, however, that the numbers are not
correlated in any way, and a larger experiment would reveal it to be random
variance. Similarly, the time taken to lock the satellites is typically very small,
but in a few situations there is a noticeable delay. The location which resulted in
a three second lock time was repeated after a thirty second pause and obtained
a sub-second lock time, but the original data was included in the results.

The experiment, although extremely limited in size, shows that it is unlikely
that GSM strength or GPS metadata would be useful in determining interesting
places. Alternative methods therefore had to be considered.

20 Detecting places by time spent

Without information about whether or not the user is indoors, the next best
method to detect interesting places is by monitoring the amount of time the
user spends there. It stands to reason that a location where the user is only
present �eetingly as they pass through is less important than somewhere they
spend half a day.

The Android operating system provides two methods of determining the user's
location - �coarse�, which uses a cell tower and WiFi access point database, and
��ne� which uses the device's GPS chipset. While �coarse� is less accurate than
using GPS, it also uses signi�cantly less battery power. Brief testing revealed
that while GPS regularly obtained accuracies of below �ve metres, �network�
location (using cell tower IDs and a built-in database) obtained accuracies in the
region of 500 metres. Network location augmented with the built-in database
of WiFi access point locations obtained accuracies in the same region as GPS.
However, WiFi augmentation only works when the user has elected to enable
WiFi on their device, and this puts a large drain on the battery.

As the most important places a user typically visits will be much greater than
500 metres apart, �coarse� location will was used for all location-related tasks in
the project. Because of this large inaccuracy, places could not be represented by
a single point but must have a radius to compensate for the inaccuracy. Based
on earlier experimentation, this radius was �xed at 500 metres.

A new �place� is identi�ed when the user remains within 500 metres of a point
for at least 3 minutes. This �gure is, hopefully, long enough to eliminate places
where the user is temporarily held up (such as tra�c lights), but short enough
to include places the user visits but doesn't remain for a long length of time
(such as supermarkets). When implementing this algorithm, care was taken to
ensure that the length of time was de�ned as a constant and so could easily be
changed if experimental data showed that it was either too long or too short.
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Part VI. The Context Analyser and

applications

The primary output of this project is the Context Analyser application, and
several further applications which use the services exposed by the Context
Analyser.

21 The Context Analyser

The Context Analyser itself is an application with a single service, a single
activity, and four content providers. Its purpose is to monitor the user's context,
analyse it as necessary, and expose the data to other applications which will
actually do something useful with it. It reuses components developed for the
Activity Recorder application to retrieve and process accelerometer input,
and a LocationMonitor class which wraps around Android's built in location
services. Persistent data such as places is stored in a SQLite database, with
logic in a custom helper class which handles creation and maintenance of tables
and allows interaction with the database without exposing SQL to the rest of
the application.

21.1 Accelerometer and location components

Figure 5 on page 36 shows the key components used in the activity inference
portion of the Context Analyser. The accel package handles low-level col-
lection of accelerometer readings. The RealAccelReader class registers itself
to receive sensor events and then makes the received data available through a
public method. It also handles acquiring of a wake lock as discussed in 15.1
to keep the device su�ciently 'awake' to collect sensor data. AccelReaders
are constructed by a factory so that they can be swapped out for test imple-
mentations if required, or when using an emulator which lacks real acceleration
sensors.

The Sampler class handles automatic, timed sampling of a reader. Once
started, it starts its AccelReader and then records a sample every 50ms until
it has obtained 128 samples. As it retrieves each sample, it computes the mini-
mum, maximum and sum of both axes that are needed for classi�cation. When
128 samples have been recorded, it executes the run method of a Runnable
provided at construction, so the owner can retrieve the results and analyse them
appropriately.

The Classifier is identical to that used in both the Sensor Logger and Ac-
tivity Recorder applications, and applies the K-Nearest Network algorithm
to its given input and model. TheModelReader is a utility class which reads
and deserialises the model bundled with the application.

The Aggregator handles aggregation of a stream of classi�cations, smoothing
out occasional spurious results as discussed in 15.2. The AutoAggregator
is an extension of this which automatically uses a Sampler and a Classifier
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Fig. 5: Accelerometer component class diagram
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to obtain the classi�cations itself. As with AccelReaders, it is constructed
by a factory so it can be swapped out for a stubbed implementation with ease.
The factory will provide a FakeAutoAggregator if it detects it is running
on the Android Emulator; this implementation simply cycles through a list of
pre-de�ned activities to allow mocking of the entire activity inference procedure.

Together, these components are capable of inferring and aggregating the user's
current activity from accelerometer data. The factory classes facilitate injection
of deterministic classes which can be used to test the system or to eliminate the
system from any testing entirely.

The location handling package consists of one interface, a factory, and two
concrete implementations. The LocationMonitor interface simply speci�es
methods to retrieve the current latitude, longitude and accuracy. A concreteRe-
alLocationMonitor implements this by registering for location events with
Android's built in LocationManager service, while the FakeLocationMon-
itor merely cycles through a pre-de�ned list of latitude and longitude pairs. A
factory class determines which implementation to return based on whether or
not the code is being executed on an emulator.

21.2 The ContextAnalyserService

The ContextAnalyserService is an Android Service that handles periodic
querying of the accelerometer and location components described above, and
other assorted tasks related to that data. When it starts, the service creates a
new AutoAggregator, a new DataHelper, an instance of Android's built
in Geocoder class, and a LocationMonitor. It also retrieves a list of place
names which have not yet been geocoded, registers a listener for an application
preferences setting titled �run�, and schedules its polling method to be called
after a sixty second delay.

Every sixty seconds, the service then:

• Retrieves the current latitude and longitude from its LocationMonitor

• Computes the distance between the last stored location and the new po-
sition

� If the distance is less than 500m, there is no known Place associated
with the current location, and this location has been observed at least
three times:

∗ Creates a new place with the latitude and longitude as a name

∗ Tells the data helper to add the place to the database

∗ Adds the place to the list of place names needing geocoding

� If the distance is greater than 500m:

∗ Update the stored latitude and longitude to the new values

∗ If the previous location had an associated Place, tell the data
helper to record the visit

� In both cases:



21 The Context Analyser 38

∗ Ask the data helper to �nd a Place corresponding to the new
location, if a place is found:

∗ Record the current time as the start time for this visit

∗ If a place had been visited previously, tell the data helper to
record a new journey with the activity log

∗ If the place is di�erent to the last know place, send a broadcast
intent

• Attempts to geocode any places with latitude/longitude names

• Starts the auto aggregator

When the auto aggregator �nishes, the service retrieves the new aggregated
classi�cation. If the user is not at a known place, but has been to one in
the past, the activity is added to the activity log and the service checks for
predictions. If the activity is di�erent to the last known activity, a broadcast
intent is sent.

Predictions work by checking for journeys which begin with similar activities to
those recorded in the activity log. The data helper retrieves all known journeys
originating at the user's last known location. Each journey is then analysed
to determine if it is compatible with the current activity log. This involves
comparing the activities in the journey to make sure that they're the same as
those logged, and the amount of time spent doing that activity is reasonably
close. The current implementation allows for a ±50% variance in the number
of repetitions of an activity. The activity log is also allowed to be a subset of
the journey being tested, as long as the subset includes the beginning of the
journey (that is, the activity log is allowed to be incomplete). If the activity log
is found to be compatible with the journey, the journey is added to a list.

Once a list of compatible journeys has been found, they are grouped by destina-
tion and the number of times each journey was made is summed into a �score�
for each destination. The best destination is then included in a broadcast in-
tent, and all of the predicted destinations are cached for use by the predictions
content provider.

The ContextAnalyserService exposes a Bindable interface with methods
for retrieving the current activity and any predictions. This is used for intra-
process communication: content providers for the activity and predictions can
bind to the service and request the data they need directly. Other content
providers simply access the shared SQLite database themselves, so do not need
to communicate directly with the service.

21.3 The public API

The primary purpose of the ContextAnalyser application is to expose the
contextual information to third-party developers in an easy-to-user manner. To
cater to di�erent types of applications, two distinct methods are provided that
expose data: a set of broadcast intents which notify interested parties as and
when a change occurs, and a collection of content providers that allow contextual
data to be queried as it is needed.
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Broadcast Intents

As mentioned above, the ContextAnalyserService �res broadcast intents
on certain occasions, namely:

• whenever the (aggregated) activity changes

• whenever the place associated with the user's location changes

• whenever predictions are calculated

Third-party applications create BroadcastReceivers which can receive these
intents. BroadcastReceivers can be registered in code or in the application's
manifest �le; in the latter case, their creation and maintenance is handled by
the OS itself, so there is very little overhead in terms of memory or CPU usage
for the application. Each of the broadcast intents include relevant data such
as the new activity, new place ID, or most likely predicted destination. This
allows applications to implement a lightweight receiver which is able to check
conditions and launch a service or activity in response to the user's context.

Content providers

For applications which need more detailed information, or wish to poll the cur-
rent state instead of receiving it asynchronously, the ContextAnalyser de-
�nes a set of Android content providers. An activity or service can query a
content provider by simply providing its URI, and optionally a projection, se-
lection, and custom ordering. In return, it receives a Cursor object which can be
used to iterate over and retrieve all the results of the query. Content providers
are used extensively by the Android OS, for example for accessing contacts,
e-mail and SMS messages.

Two content providers - journeys and places - simply pass queries directly on
to the backend database, which retrieves data from (or modi�es data in) the
journey, journeysteps and locations tables. This is extremely simple to imple-
ment as the Android SQLiteDatabase class has a query method with the same
signature as that implemented by content providers.

A further two content providers - activities and predictions - are backed by
data retrieved from the ContextAnalyserService via its bindable interface,
as discussed previously. The retrieved data is added to a MatrixCursor and
returned to the caller. These two providers, at present, do not allow the caller to
specify a projection, selection arguments, or an ordering. These parameters are
all biased towards a SQL-like model, and there is no simple way to apply them
to a MatrixCursor. Some built-in Android content providers, such as the
gmail-ls provider which facilitates access to the user's gmail account, also do
not implement projection, selection or ordering; this suggests that in situations
where the provider is not backed by a SQLite database, it is acceptable to just
ignore these parameters. Of course, they would be more useful if the parameters
were respected, so the implementation may be reconsidered in the future.
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API class

In order to use receive intents or use content providers, developers need to know
the URIs and key names data structures involved. These are published in the
developer documentation (Section E), and an optional lightweight �API� is also
provided to save developers having to hard code common String and URI values.
This API, as discussed in the developer guide, consists of a set of nested public
classes with public String and URI constants. Developers simply drop a single
JAR archive or a single JAVA source �le into their projects, and they can then
access constants for the content provider URIs, column names for each exposed
content provider, and intent names and metadata for broadcast intents.

Permissions

In order for the Context Analyser function, it has to ask the user for the relevant
permissions to use the accelerometers, access their location, and keep the device
awake. All of these permissions are classed as �dangerous� and are �agged to
the user when they install the application. The Android OS enforces access
control based on permissions, and will cause runtime exceptions to be thrown
if applications attempt to access a resource they do not have access to.

In order to protect users' privacy, the Context Analyser de�nes its own set of
permissions which third-party applications must request in order to retrieve
context information. These permissions are all designated �dangerous� so that
users will be aware of the information that applications are requesting. Without
these permissions, the Context Analyser would open up a loophole whereby
applications could retrieve location information from the Context API that they
didn't have permission to access directly through the OS. The Android OS makes
it extremely simple to enforce these permissions - in most cases a single tag is
added in the application's manifest �le, or a single method is invoked in code,
and the OS handles everything else.

One extra permission was also created which is requested by the Context Anal-
yser itself. This permission is called �BROADCAST� and is used to ensure data
integrity for third party applications. Applications are encouraged to check for
the �BROADCAST� permission when receiving broadcast intents (and again,
the Android OS makes this as simple as adding a tag to an element in the
manifest �le) in order to ensure that the broadcasts came from a source that
the user trusts to make them. This prevents malicious third-party applications
broadcasting erroneous data, or broadcasting high volumes of data, to negatively
impact context-aware applications.

22 Places application

The �places� application consists of a single activity which shows an Android
MapView, with two custom overlay layers. One layer renders a star at the
latitude/longitude of each place known to the Context Analyser, while the
second layer renders red lines between places that are connected by journeys.
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The thickness of the line is proportionate to the number of times the journey
has been undertaken.

The application retrieves its data from two of the Context Analyser's content
providers. For each location returned by the places content provider, the appli-
cation creates a new OverlayItem containing the latitude/longitude, name,
and a summary of the statistics associated with the place. The corresponding
overlay shows a new toast containing the name and statistics when the user
clicks on or near the overlay item (see Figure 9 on page 56).

The journeys overlay constructs a 2-dimensional map of OverlayItems to
OverlayItems to the number of times that journey has been performed (i.e.,
Map<OverlayItem, Map<OverlayItem, Integer>�>). It is passed a list
of items created based on the places content provider, and then retrieves all
known journeys from the journeys content provider and uses them to build the
map. Journeys are normalised so that the ID of the start point is always less
than the ID of the end point as the overlay is not concerned with direction.

As each OverlayItem holds the latitude and longitude of the point, it is there-
fore trivial to iterate over each pair of items, request the MapView translate
the latitude/longitude into screen co-ordinates, and render a line between the
two points. The line width is set such that the most traveled journey is 10 pixels
wide, and all other journeys are scaled in proportion.

23 Locale plugin

The locale plugin is a lightweight application which connects the Context
Analyser to the third-party Locale software, which is designed to allow users
to change settings of their device automatically when certain �situations� are
encountered. By default, situations can include location, time, battery power,
orientation and contact information. Many additional plugins are available on
the Android Market to augment these conditions. The plugin for the Context
Analyser allows users to add conditions for their current activity and (most
likely) predicted destination.

In order to show new conditions in Locale, the plugin simply has to de�ne
an activity which can handle a certain prede�ned intent. One such activity is
created for each condition, and they simply provide a lightweight user interface
to allow the user to select the options for the condition. The activity for selecting
a destination, for example, queries the places content provider and displays the
result in a combobox. The user then selects the desired place, and either presses
their back button, or presses menu and taps �Save� (this is a slightly odd user
interface, but it is a standard amongst Locale plugins and highly recommended
by the Locale developers).

A broadcast receiver is then created which responds to queries from Locale. It
does this by querying the prediction and activity content providers, and compar-
ing the values they return with the values previously supplied for the condition
by the user (these are stored in an Intent's extra �elds, which are provided to
the receiver by Locale). It then sets a result code to indicate whether or not
the situation is satis�ed at present
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The broadcast receiver also listens for intents from the content analyser, and
sends a special intent to Locale to suggest that it should requery the plugin.
This allows Locale to be aware of when conditions change, and adjust its
schedule appropriately. This work�ow also allows Locale to govern how often
the conditions are queried, which allows it to reduce the impact on battery life.

24 Context-aware Home Screen

The context-aware home screen took a substantial amount of development time.
It is a replacement for the stock Android 'home' screen which not only gives
the user access to their applications and contacts, but displays recent e-mails,
text messages, upcoming appointments and missed calls. In addition to this, it
learns and adapts to the user's behaviour in a context-sensitive fashion.

The context-aware home screen consists of a set of �modules� which each take
up a small portion of the screen real estate. Each module displays one or more
actionable items, such as a set of application shortcuts, an e-mail message, or
a missed call. The home screen supports a number of ��xed� modules which
are displayed at the top of the screen, and a set of other modules which are
displayed below and may be scrolled vertically. This allows important or fre-
quently used modules such as application shortcuts to be visible regardless of
the other information displayed.

Each module is expected to tailor its behaviour to the user's current context,
either by ordering its contents appropriately, or selectively displaying the most
relevant content. For example, the application shortcut module will order the
shortcuts by those it anticipates will be most likely to be used in the present
context, whereas an e-mail module will chose to display the e-mail messages
most likely to be read. In addition, modules which aren't �xed are ordered by
the home screen according to the context and previous history.

The current context is represented as a set of tuples of context type and value.
For example, a complete description of a context may be:

(location,1),

(destination,2),

(activity,CLASSIFIED/WALKING),

(day,Monday),

(hour,14),

(period,Afternoon)

When the user performs an action, a tuple consisting of the module name and
a type and identi�er for the action is created. It is then recorded against each
tuple in the current context; so if the user tapped an e-mail with the label �work�
in the above context, some of the generated tuples would be:

(email,label,work,location,1),

(email,label,work,destination,2),

(email,label,work,activity,CLASSIFIED/WALKING),

...

(email,label,work,period,Afternoon)



24 Context-aware Home Screen 43

Such an event would also cause similar data to be logged for the sender of
the e-mail and the read state. A helper class is provided by the home screen
activity to each module to facilitate storing and querying of such tuples. On
the database level, each tuple is associated with a count - the number of times
it has been generated by an event.

When a module is deciding how to arrange or select its contents, it queries for
all tuples which match the current context. It can then sum the number of times
each action occurred in a related context, and use this score in its selection or
ordering algorithm. The same algorithm is applied to the ordering of modules on
the home screen itself - each interaction is recorded as a tuple of (homescreen,
activity, <module>).

Some actions the user performs may be universal, rather than tied to a speci�c
context. For example, a user is more likely to tap on an unread e-mail to read it
than to tap an e-mail they've already seen. To compensate for this fact, a special
context provider was introduced which constantly provides the tuple (global,
true). This allows modules to seamlessly incorporate the total number of times
an action was performed into their algorithms.
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Part VII. Evaluation

This section contains exerts from the project speci�cation and an evaluation of
how well the goals were met.

25 Activity classi�cation

The classi�er should be able to classify the following activities: walk-
ing, running, standing, sitting, traveling in a vehicle. ... It is ex-
pected that the classi�er should correctly classify all activities with
an accuracy of at least 70%, within 30 seconds of the activity being
started.

The activity inference component of the context analyser is able to uniquely
identify all of the activities stated in the speci�cation, with the exception of
running. In addition, it can distinguish between traveling by car and bus, and
walking up or down stairs. Of over 1,000 data samples submitted by users, not
a single one was described as �running�, which suggests that the omission has
not negatively impacted the project in any way.

The accuracy of the classi�er when presented with supported activities is over
75% (see 11.1). This was all accomplished by using just two features extracted
from two axes of the accelerometer; typical research applications that achieve
similar accuracies often use hundreds of features and combine many di�erent
sensors.

The timescale for activity detection was consciously expanded during this project.
To conserve battery life, polling was reduced to once a minute, and the aggre-
gation of results adds a further delay to activities being classi�ed. Brief tests
with the context analyser suggest that activities take 2-3 minutes to be correctly
identi�ed. The change in timescale re�ects a shift in aims from enabling applica-
tions to respond instantaneously to user activity (of which there are few genuine
use cases) to facilitating a less obvious background enhancement of applications,
as seen in the context home screen application.

26 Experimentation

The results of the experimentation described should be written up
as a report. The reports must include the data collected in each of
the experiments, the conclusions drawn from those, and the impact
of the results of the experiment on the project deliverables.

Several experiments were performed as part of the project. These include inves-
tigating Bluetooth ubiquity (Section 16) and methods of determining whether
or not a device is indoors (Section 19). Consideration was also given to the use
of data from a camera input (Section 18), and functioning code was developed
to use a Microphone input (Section 17).
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Ultimately, none of these experiments contributed positively to the end prod-
uct. The experimentation did, however, save development time which would
have been spent on features that would probably have not helped the project.
The lack of positive results, while acceptable according to the speci�cation,
suggests that other areas should have been considered or alternative approaches
attempted. Some possibilities for these are discussed in Section 31.

27 Deliverables

The following items should be delivered: ... Context-aware Frame-
work, ... Activity condition for Locale, ... Context-aware home
screen.

A total of four (�nal) applications were delivered, along with two applications
used during the development process. All three applications required by the
speci�cation were successfully implemented, along with the �Places� application
which exposes some functionality of the context API which would otherwise be
hidden from the user.

The application should provide two di�erent interfaces to retrieve the
user's context. The �rst should be an implementation of the Android
ContentProvider interface. The second interface should use Android
broadcast Intents to notify any interested application whenever the
user's activity changes.

The API provided by the Context Analyser exposes a total of four content
providers, and makes use of three di�erent broadcast intents. These are em-
ployed by the Places application, Locale plugin, and context home screen. The
two methods compliment each other and facilitate two di�erent methods of in-
terfacing very well.

28 Testing

Throughout the development of the project, unit tests should be
created to test key functionality of all applications. It is expected
that at the completion of the project, all unit tests should pass
successfully, and they will have a code coverage of 80% or above.

While unit tests were employed throughout the project, the emphasis was on
testing small parts of complex or potentially unstable code, and code which was
not easily covered by systems tests. Tests were split between those ran on a
standard JVM from the development environment, and those that needed to be
ran on the device itself with an Android-speci�c test harness. While no �gure
for code coverage is available due to this split, and due to lack of coverage tools
for the latter type of tests, it is expected that the �gure would be well below
80% line coverage.
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This represents a failure to adhere to Test-Driven Development (TDD) as origi-
nally intended (but not documented). This involves writing unit tests as a form
of �speci�cation� before implementing the unit itself. With this project, how-
ever, a lot of code started out as small �experiments� to determine whether or
not something would work, or the exact output of some built-in functionality;
it then evolved into a full implementation, and adding unit tests after the fact
was not considered a high priority for most code.

The classi�er application should also have a suite of system tests.
These should consist of a set of fake or pre-recorded inputs which
are fed into the application in place of raw sensor data. The output
of the classi�er can then be compared to expected output for the
data.

The input sources for the framework are all located behind factory classes. These
classes are able to switch out the real information for a stubbed version which
simulates the data being received; this is automatically done if the application
is ran on the Android Emulator, which does not emulate sensor inputs of any
kind. The stubbed classes allow for easy testing of the context framework and
the applications that use it, which makes for veri�cation of the whole system
extremely easy.

29 User testing and feedback

The Locale addon and context-aware home screen should be sub-
ject to user acceptance testing for evaluation. This should take the
form of providing the applications to multiple end users, allowing
them to use them for a period of time (providing instructions for
certain tasks to complete). The users should then be presented with
a questionnaire which they can use to evaluate the functionality,
utility and design of the applications. ... In addition to providing
the applications to a closed set of users, the applications should be
published to the Android market.

All four Context Analyser applications were given to a small group of test
users, along with copies of the user manuals and developer's guide. No ques-
tionnaires were used, but the users were asked to give feedback and evaluate.
Both of the preliminary data gathering applications were published to the An-
droid Market where they received comments and ratings by users. At the time
of writing, the Context Analyser suite had not yet been published to the
market.

The two test applications published to the market, which were never intended
to be particularly valuable to end users, had between 100 and 500 downloads,
and both received an average rating between 3 and 4 stars (annotated as �Aver-
age� and �Above Average� within the Market UI, respectively). Some positive
comments were left, such as the following comment regarding the Sensor Logger
application:
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It works on myTouch3G but it would be better if it ran in background
and actually kept a log of what you do throughout the day. At least
it was right!

Negative feedback mostly revolved around activities which the applications were
not trained for being incorrectly classi�ed. As evidenced with the annotated
data which was submitted, a lot of users attempted to get the application to
classify them sleeping, and were presented with seemingly bizarre results such
as �Traveling by bus�. This is because one sample for traveling by bus was
close to a �stationary� reading - a vertical acceleration of 9.8m/s, no horizontal
acceleration, and little variance.

Methods to correct or detect this type of erroneous result would have given a
much better user experience, and reduced the small amount of negative feedback
received, but no such methods were attempted during this project. This was
because early testing ignored activities which the classi�er did not know of, and
realisation of the scope of the problem came too late into the project to make
the changes necessary. Some ideas for combating this problem are presented in
Section 31.
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Part VIII. Conclusion

30 Project outcomes

A context-aware API has been developed for the Android platform. This was
the primary purpose and output of this project, and it has been evaluated to
perform to an acceptable accuracy. While not all of the evaluation targets were
met, a number of these were conscious decisions to deviate from the previous
speci�cation in response to a change in development method or change in target
audience.

In developing the API, an algorithm to classify accelerometer data using an
extremely small set of extracted features was devised. This is a signi�cant
deviation from established works in the �eld, which mostly attempt to use as
many features as possible in an attempt to increase accuracy.

In addition to the main API, the project has also delivered a set of applications
built on top of it, most notably the context aware home screen. This clearly
demonstrates how context-aware systems can enhance a user's experience by
tailoring content and behaviour to the current context.

31 Future work

There are many areas in this project which could be expanded on or enhanced
in some way. Some of these are discussed below.

31.1 Using GSM metadata to enhance activity classi�cation

While experiments with using GSM and GPS signal strength to determine in-
teresting locations were unsuccessful, there is a possibility that some GSM data
can be used in order to augment the existing activity classi�cation system. In
order to promptly hand o� communications to alternative cell sites when the
user moves around, all mobile telephones track the cell IDs and signal strengths
of their neighbouring cell towers as well as the current one.

It is possible that measuring the rate of change in either the strength of neigh-
bouring cell towers, or indeed the change in cell towers themselves, could be
used to infer the approximate speed the user is traveling at. While this could be
a piece of standalone contextual information, it would be possible to integrate
this with the activity inference system to help reduce incorrect results.

As discussed earlier, a large percentage of incorrectly classi�ed samples involved
the user sitting down and being misclassi�ed as being in a vehicle. A simple
decision tree could be implemented that biased the activity inference algorithm
to favour the �sitting� classi�cation over vehicle-based ones if the user was not
moving at speed. This has the potential to increase accuracy to the region of
90%.
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31.2 Automatic classi�cation of places

While the context analyser correctly identi�es interesting places, it would be
useful to know what type of place they were. �Home� and �Work� could poten-
tially be inferred by the times of day spent at each location; interchanges could
be identi�ed by the duration of visits and the activity involved in getting to and
from the location, etc.

This would enhance the behaviour of contextual location-aware services, which
currently have to rely on analysing the user's activity (either their real life
activity or their interactions with the phone) in order to correctly adapt their
behaviour to places. Instead of observing that a user frequently reads e-mails
at place #17, an application could infer that as place #17 is a work place, the
user is more likely to want to read e-mail than play games.

31.3 On-device training for new activities

Because it uses an instance-based learning algorithm, it would be very easy
to add new samples to the activity classi�cation model on the device itself.
However, there are various challenges which would make this more di�cult.
At present the model data is stored in a binary �le bundled with the Context
Analyser; this means that it is not modi�able at runtime. In order to integrate
new data, it would either have to be extracted to storage on the device and then
modi�ed, or imported into a database.

In addition, it would be hard to ensure that data entered on the device was of
a good quality. Without a way to explore the model itself, the user has no way
of �nding and correcting or deleting poor quality training samples which lead
to false classi�cations. Finally, removing the developer from the update process
means that new activities have to be added by each and every user, instead of
added once by the developer and shared to all users. Further work on this topic
would have to explore ways to allow users to add high quality data, and then
ensure that data is shared appropriately.

31.4 �Omniscient� context home screen

The present context home screen only records what happens when the user
directly interacts with it. Further work could expand this to make the home
screen aware of all actions that were performed on the device, and to incorporate
these into the dashboard to further improve the user experience.

An obvious example of this is monitoring outgoing phone calls, which can be
invoked from a multitude of applications without directly tapping the contact
on the home screen. At present, the home screen sees a tap on the �Dialer�
application (for example) and nothing else; if it monitored phone calls and
other activities it could also make the contact involved more prominent on the
home screen.

Another use would be monitoring the time spent in applications (rather than
just the number of launches), and which activities within those are accessed. If
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a user repeatedly opens the market application to browse to the most recently
added games, the context home screen may be able to detect that behaviour
and automatically add a new shortcut which performs this action automatically
for them. Work would need to be done in order to determine whether or not
this was possible in a general case for any application.
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Part IX. Appendices

A User Guide - Context Analyser

Welcome to the Context Analyser. This application analyses your context as
you carry your phone around with you performing day-to-day activities. Other
applications can query your context information and enhance their behaviour
so that they're more relevant to what you're doing.

The context analyser currently provides the following context information:

• Your activity

• Your location

• Your predicted destination, if you're not at a known location

It does this by gathering data from your phone's accelerometers and location
provider. Data is recorded for a few seconds once a minute, to preserve your
battery life.

For your 'activity', the context analyser tries to detect whether you are walking,
sitting, standing, or in a vehicle. It can also expand on these to detect the
di�erence between a car and a bus, and walking normally and walking up or
down stairs. Future updates may add more activities.

For your location and destination, the context analyser deals in 'places'. These
are locations up to 500m wide where you have spent several minutes not moving.
A place could correspond to your home, o�ce, favourite co�ee shop or a bus stop
you frequently wait at. When you move between places, the context analyser
notes which activities it thought you were performing, and stores these as a
'journey' which links the two places. When you next set o� from one of these,
it can compare your activities and see if it can guess where you're heading.

There is very little you can do with the context analyser on its own. It's built
as a tool for other applications to hook into. You can see some of these featured
applications listed when you open the context analyser (see Figure 6 on page
52) . Simply click on one of them and the Android market will open for you to
view or install your chosen app.

The context analyser will run a background service as soon as you open the
application, or whenever another application requests data from it. If you wish
to disable the background service (which will stop the context analyser from
detecting places or determining your activity), press the menu button and select
the Disable service option (see Figure 7 on page 53). The background service
will not run until you repeat the procedure and select Enable service.
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Fig. 6: Featured applications
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Fig. 7: Disable service button
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B User Guide - Places

The places application shows you all of the places detected by the Context
Analyser, and the journeys you make in between them. The Context Anal-
yser is a tool which tries to determine your current activity and location, and
your destination if you're on the move. If you don't have the Context Anal-
yser installed, you'll be prompted to install it from the market.

The places application displays a map and marks each detected place with an
orange star. Places you've traveled between are connected with a red line - the
thicker the line, the more frequently you make that journey. In Figure 8 on page
55, you can see two places with a very frequently made journey between them.

You can pan the map by dragging it around with your �nger, or by moving
your phone's trackball (if it has one). To zoom in and out, tap the screen and
wait two seconds and the zoom controls will appear at the bottom of the map.
Simply tap either button to zoom in or out.

To see more information about a place, simply tap on its star. A small toast
will appear giving you the name of the place, the number of visits, and the date
and time of your last visit. Names are determined automatically by geocoding
the latitude and longitude to a nearby place name - this could be the name of a
street, a nearby landmark or a side alley. Figure 9 on page 56 shows the result
of tapping one of the stars - the name of the place is �Rose Alley�, it has been
visited 37 times and the last time this happened was in the early hours of July
the 10th.
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Fig. 8: Places application
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Fig. 9: Place details
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C User Guide - Locale plugin

The Context Analyser plugin for Locale allows you to create Locale
situations based on information provided by the Context Analyser. Locale
is an application which allows you to make your phone change settings, send
tweets, or perform a variety of other actions, whenever a certain 'situation'
occurs. A situation is just a set of conditions - such as your location, your
phone's battery life, or the current time. The Context Analyser application
automatically determines your current activity (such as 'walking' or 'sitting
down'), and your predicted destination if you're traveling. This plugin requires
that you have both Context Analyser and Locale installed. Both are
available from the Android market.

The plugin adds two new conditions which you can use in Locale situations:

• Activity - the activity you are most likely performing

• Destination - yourmost likely destination, if you're not at a known location

A basic overview of adding these new conditions follows. For full documentation
on how to use Locale, consult the Locale user manual.

When you open Locale, you will see a list of currently de�ned situations (Fig-
ure 10 on page 58). You can edit existing situations by tapping on them. Exist-
ing situations may be deleted by clicking on the red minus button to the right of
the situation name. Finally, new situations can be created by tapping the 'Add
Situation' button at the bottom of the screen. Locale shows any situations
that are active (all the conditions currently hold true) in bold.

Once you've selected a situation to edit, or created a brand new situation, you
will see Locale's 'edit situation' screen (Figure 11 on page 59). This allows
you to set the name of the situation, add or edit conditions, and add or edit
settings. The Context Analyser plugin adds two new conditions, which are
shown in the list when you click 'Add condition' (Figure 12 on page 60). Select
either 'Activity' or 'Destination' to add a new condition based on your current
context.

When you select one of the plugin's conditions, you will be presented with a
screen which allows you to specify which activity (see Figure 14 on page 62) or
destination (see Figure 13 on page 61) you wish to match. For activities, you
can select one of sitting, standing, walking, walking up stairs, walking down
stairs, dancing, traveling bar car, or traveling by bus. For destination, you may
select any place which the Context Analyser has previously detected.

Once you've selected your chosen activity or destination, press the menu button
and select the 'Save Changes' option (see Figure 15 on page 63). You will then
return to the situation editor where the new condition will be displayed. You
may then add settings as with any other Locale situation, and Locale will
automatically apply these when all of the conditions match.



C User Guide - Locale plugin 58

Fig. 10: Locale main screen
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Fig. 11: Locale editing situation
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Fig. 12: Locale add condition popup
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Fig. 13: Locale plugin selecting destination
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Fig. 14: Locale plugin selecting activity
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Fig. 15: Locale condition editor menu
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D User Guide - Context Home Screen

The �context-aware home screen� replaces your phone's normal home screen with
an information rich dashboard which can adapt to o�er di�erent information
based on your current context. As you use the home screen (by, for example,
launching applications, opening e-mails, etc), the home screen remembers what
you were doing, when you did it, and where you were at the time. It then applies
this information to automatically make the shortcuts or messages it thinks you
will be most interested in more prominent.

Once the context-aware home screen is installed, pressing the �Home� key or
turning on your device will prompt you as to which application you wish to pro-
vide the �Home� functionality, as seen in Figure 16 on page 65. Select �Context
Home� to open the context home screen. If you want this to always open when
you press home, tick the �Use by default for this action� checkbox at the bottom
of the prompt before making your choice.

The context home screen is shown in Figure 17 on page 66. The top two lines of
the home screen show shortcuts for your installed applications and contacts who
have pictures associated with them. You can open the application or contact
information screen by tapping on the appropriate image. To scroll left or right,
simply drag your �nger across the shortcuts. You may also use your device's
trackball to navigate around the screen, if it has one.

The rest of the home screen shows you your recent e-mails, text messages,
appointments, missed calls, and other information. You can scroll up and down
in this area by dragging your �nger up or down. Tapping on an item will
open it in the relevant application. The context home screen will attempt to
show contact pictures for each event where they are available; if the sender is
not associated with a contact, or the contact has no photograph, then a white
�running man� will be displayed.

As you use the context home screen, you should notice that the applications
you use most frequently start appearing nearer to the start of the list and the
types of event that you click on trickle up towards the top of the screen. If you
regularly call someone every Saturday evening, you should �nd that person at
the top of your contacts list when you look on Saturday evening. The more you
use the context home screen, the better it adapts to your needs!
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Fig. 16: Home screen selection
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Fig. 17: Context home screen
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E Developer Guide

This guide details how you can integrate the data made available by the Con-
text Analyser into your own applications. It is expected that you are familiar
with Android application development and general concepts. For an overview
of how the Context Analyser works, please consult the user guide.

The Context Analyser exposes its data via a set of Content Providers. These
are augmented by several broadcast intents which can be used by third party
applications to receive immediate noti�cation when the user's context changes.

E.1 Permissions

In order to protect the user's privacy, a series of permissions are de�ned by the
Context Analyser, and access to data and broadcast intents is limited to
applications which hold the appropriate permissions. The Context Analyser
de�nes the following permissions:

• uk.co.md87.android.contextanalyser.RECEIVE_UPDATES - allows the
application to receive real-time updates about context or place informa-
tion through broadcast intents

• uk.co.md87.android.contextanalyser.READ_PLACES - allows the appli-
cation to read places from the relevant content provider

• uk.co.md87.android.contextanalyser.WRITE_PLACES - allows the appli-
cation to modify places via the relevant content provider

• uk.co.md87.android.contextanalyser.READ_JOURNEYS - allows the ap-
plication to read journey information from the relevant content providers

• uk.co.md87.android.contextanalyser.WRITE_JOURNEYS - allows the ap-
plication to modify journey information via the relevant content providers

• uk.co.md87.android.contextanalyser.BROADCAST - permission used when
broadcasting context-related intents. Applications may wish to check that
broadcasters hold this permission to prevent third parties broadcasting er-
roneous data.

If you do not declare the required permissions, a run time error will occur
when your application attempts to access protected data. All permissions listed
here are de�ned as dangerous, which means that end users will be prompted
about them when installing any application using them; this is in line with the
underlying accelerometer and location permissions.

E.2 Model

The Context Analyser is backed by a database containing tables for places,
journeys and journey steps. Activities and predictions are stored in memory.
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A place is a location represented by a latitude/longitude tuple. Places have a
radius of 500 metres; whenever a user moves to within 500 metres of a known
place, they are assumed to be located at that place. New places are identi�ed
when the user is observed to be in the same location (within 500 metres) for
three consecutive readings, which occur at 1 minute intervals. Places also have
an associated name, which is initially set to a string representation of the lati-
tude and longitude; the Context Analyser will attempt to rename any place
with such a name by geocoding the latitude/longitude into a nearby street or
landmark name.

An activity is represented by a string delimited by forward slashes (/). This
forms a hierarchy of classi�cations, with the following possible values:

• CLASSIFIED/DANCING

• CLASSIFIED/IDLE/SITTING

• CLASSIFIED/IDLE/STANDING

• CLASSIFIED/VEHICLE/BUS

• CLASSIFIED/VEHICLE/CAR

• CLASSIFIED/WALKING

• CLASSIFIED/WALKING/STAIRS/DOWN

• CLASSIFIED/WALKING/STAIRS/UP

It is possible for activities to contain only a part of the hierarchy - for exam-
ple if the readings alternate between classi�cations for traveling by bus and by
car, they will be aggregated and the resulting activity will be simply CLASSI-
FIED/VEHICLE. Similarly, if the user's activity is in constant �ux, the resulting
activity will be aggregated to simply 'CLASSIFIED'.

A journey is a recorded sequence of activities which occurred when the user
moved from one place to another. Whenever the user leaves a known place, the
Context Analyser begins a log of activities; when they then reach another
known place, the log is converted into a journey. Each journey consists of a
sequence of journey steps, which describe a single activity and a number of
repetitions.

For example, if the user leaves place A, spends �ve minutes walking, then ten
minutes on a bus, and arrives at place B:

• A journey will be created with a start point of A and an end point of B

• The journey will consist of two journey steps:

� Step one will have an activity of CLASSIFIED/WALKING with �ve
repetitions

� Step two will have an activity of CLASSIFIED/VEHICLE/BUS with
ten repetitions
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When the user is on a journey, the Context Analyser compares their current
history to that of previously recorded journeys leaving the same place. If any
of the journeys match, their destinations are considered as predictions. The
number of times each matching journey occurred is summed and the result is
used as a 'score' for the destination involved. The destination with the highest
score is considered the most likely destination for the user.

For the purposes of prediction, a partial journey is considered to match a his-
torical journey if:

• it contains the same number of, or fewer, steps

• each step has the same activity

• the number of repetitions in each completed step (not the last step) is:

� no less than 50% of the historical value

� no greater than 150% of the historical value

• the number of repetitions of the last step is:

� no greater than 150% of the historical value

E.3 Broadcast intents

TheContext Analyser broadcasts three di�erent intents to make other appli-
cations aware of certain events. Applications require the RECEIVE_UPDATES
permission to receive these broadcasts, as discussed previously. These intents
are:

• uk.co.md87.android.contextanalyser.ACTIVITY_CHANGED

• uk.co.md87.android.contextanalyser.CONTEXT_CHANGED

• uk.co.md87.android.contextanalyser.PREDICTION_AVAILABLE

The ACTIVITY_CHANGED intent is broadcast whenever the user's activ-
ity is discovered to have changed. It contains two string extras - the old activity
and the new activity - under the keys �old� and �new� respectively.

The CONTEXT_CHANGED intent occurs whenever some other aspect of
the user's context changes. Presently this only includes the user's current place.
It contains an integer extra under the key �type� which describes which type of
context has changed; this will have the value 1 for place updates. Place updates
will also have two further integer extras - the place the user was previously in (or
-1 if they were not in a known place) and the place the user is now in - under the
keys �old� and �new�, respectively. These place IDs can be resolved to names and
latitude/longitude by querying the relevant content provider, described below.

The PREDICTION_AVAILABLE intent is broadcast whenever a predic-
tion has been made by the Context Analyser. The best available predic-
tion is included as a place ID in the �best_target� key, the total score for the
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prediction to that place is available as an integer in the �count� key, and the
'probability' (the score for that place divided by the total scores for all predicted
places) is a �oat in the �best_probability� key. A full set of predictions can be
retrieved from the relevant content provider, described below.

As discussed in the permissions section (E.1), you may wish to make sure that all
broadcasts you receive are sent by an application which holds the BROADCAST
permission. This ensures that the user trusts the application to send these
broadcasts, and reduces the chance that they are from a malicious application
attempting to introduce erroneous data or otherwise compromise your receiver.

E.4 Content providers

The Context Analyser provides four content providers from which you can
receive data:

E.4.1 Activities

Allows querying of the user's current activity. This may be expanded in future
versions to allow querying of all known activities. Read only, does not accept
selection, projection or order parameters.

URI: content://uk.co.md87.android.contextanalyser.activitiescontentprovider/current

Content type: vnd.contextanalyser.activity

Columns:

Name Type Remarks
activity string The user's current activity

E.4.2 Journeys

Allows querying of the user's historical journeys and steps within them. Read/write
access, supports selection and ordering.

Journeys URI: content://uk.co.md87.android.contextanalyser.journeyscontentprovider/journeys

Content type: vnd.contextanalyser.journey

Columns:

Name Type Remarks
_id long A unique, persistent ID for the journey
start long The ID of the place at which this journey starts
end long The ID of the place at which this journey ends
steps int The number of steps in this journey

number int The number of times this journey has been made
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Journey steps URI: content://uk.co.md87.android.contextanalyser.journeyscontentprovider/steps

Content type: vnd.contextanalyser.journeystep

Columns:

Name Type Remarks
_id long A unique, persistent ID for the step

activity string The activity that was observed
repetitions int The number of times the activity occurred
journey long The ID of the journey that this step belongs to
next long The ID of the next step in the journey, or 0 if the last step in sequence

E.4.3 Places

Allows querying of the user's know places. Read/write access, supports selection
and ordering.

URI: content://uk.co.md87.android.contextanalyser.placescontentprovider/places

Content type: vnd.contextanalyser.location

Columns:

Name Type Remarks
_id long A unique, persistent ID for the place
name string The name of the place
latitude double The latitude of the centre of the place
longitude double The longitude at the centre of the place
duration long Amount of time in seconds spent at the place
times long The number of times the place has been visited
lastvisit long The unix timestamp of the last visit (seconds)

E.4.4 Predictions

Allows querying of the current predictions, if any. Read only, does not accept
selection, projection or order parameters.

URI: content://uk.co.md87.android.contextanalyser.predictionscontentprovider/predictions

Content type: vnd.contextanalyser.prediction

Columns:

Name Type Remarks
_ID long A unique ID for the prediction
place long The ID of the predicted destination
count int The 'score' of the prediction

E.5 Context API

A small �API� is available to facilitate easier access to the services exposed by the
Context Analyser. This consists of the ContextApi class and its assorted
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subclasses. These subclasses contain constant values for all column names, URIs
and content types, as well as intent names and enumeration values.

The ContextApi.Intents class de�nes string constants for the three broad-
cast intents which are used by the Context Analyser. The ContextTypes
inner class contains integer constants for the possible 'type' values for the CON-
TEXT_CHANGED intent.

ThePlaces, Journeys, JourneySteps, Predictions andActivities classes
all contain a CONTENT_URI �eld containing the Uri of the the content provider,
a CONTENT_TYPE �eld containing the string mime type for that provider,
and a static ColumnNames class which contains string constants for each col-
umn returned by the content provider.

The following code from the Places application shows the use of these constant
values:

final Cursor cursor = managedQuery(ContextApi.Places.CONTENT_URI,

new String[] { ColumnNames.LATITUDE, ColumnNames.LONGITUDE,

ColumnNames._ID, ColumnNames.NAME, ColumnNames.LAST_VISIT,

ColumnNames.VISIT_COUNT }, null, null, null);

if (cursor.moveToFirst()) {

final int nameColumn = cursor.getColumnIndex(ColumnNames.NAME);

final int idColumn = cursor.getColumnIndex(ColumnNames._ID);

do {

final String name = cursor.getString(nameColumn);

final int id = cursor.getInt(idColumn);

// etc

} while (cursor.moveToNext());

}

Note that the code imports both the ContextApi class, and the Contex-
tApi.Places.ColumnNames class.
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F Extract from export of window data

Activity: CLASSIFIED/WALKING

1264518159452:-7.804459,-1.3620348,-0.55843425,99.4375,73.3125,-32.6875,

1264518159502:-8.853226,-0.53119355,-0.0,100.4375,72.0625,-33.6875,

1264518159557:-11.699879,0.8308412,-1.2803127,101.1875,70.8125,-32.9375,

1264518159601:-13.797412,-0.24516626,-1.1168685,101.4375,70.5625,-31.9375,

1264518159652:-10.59663,-4.8760843,1.96133,102.375,71.5625,-31.1875,

1264518159702:-10.528529,-5.3119354,0.6946377,102.125,71.5625,-29.6875,

1264518159751:-14.219643,-2.506144,2.4108016,102.375,69.5625,-28.0,

1264518159801:-9.275456,-1.2666923,1.253072,102.875,69.8125,-29.0,

1264518159852:-5.1621118,-0.7491191,0.27240697,103.125,69.8125,-30.6875,

1264518159901:-3.568531,-0.8036005,0.88532263,103.625,68.5625,-31.9375,

1264518159951:-4.4810944,-0.51757324,1.253072,103.625,69.0625,-31.6875,

1264518160001:-6.9191365,1.4028958,1.0487667,103.875,70.5625,-30.4375,

1264518160061:-13.007432,1.3484144,0.32688835,105.0625,70.5625,-29.0,

1264518160102:-16.42614,1.2394516,-0.10896278,104.375,71.3125,-27.25,

1264518160152:-15.908566,-2.3018389,-0.06810174,104.625,71.0625,-27.25,

1264518160202:-9.915613,-4.780742,1.6344417,105.3125,71.0625,-29.0,

1264518160251:-10.242501,-2.465283,2.73769,105.0625,70.3125,-30.4375,

1264518160301:-10.351464,-4.8897047,0.58567494,104.375,71.3125,-32.6875,

1264518160351:-7.600154,-2.0294318,0.81722087,102.375,73.0625,-33.6875,

1264518160401:-6.1291566,-1.0760075,0.7218784,101.1875,72.3125,-34.375,

1264518160451:-5.3936577,-1.5527196,0.3677494,101.1875,71.8125,-35.625,

1264518160502:-6.101916,-1.3892754,-0.23154591,100.6875,72.0625,-35.625,

1264518160551:-7.2187843,-1.525479,-0.8308412,100.9375,68.0625,-36.625,

1264518160694:-15.227549,-2.2609777,0.6401563,101.4375,68.0625,-36.625,

1264518160697:-15.227549,-2.2609777,0.6401563,101.4375,68.0625,-36.625,

1264518160701:-15.227549,-2.2609777,0.6401563,101.4375,68.0625,-36.625,

1264518160752:-9.956474,-3.840938,3.405087,103.125,68.8125,-36.375,

1264518160802:-12.598822,-5.298315,0.32688835,103.875,69.3125,-34.875,

1264518160858:-13.756551,-2.9283748,2.5333846,105.0625,69.3125,-32.6875,

1264518160901:-8.962189,-1.6344417,0.9942854,105.5625,68.0625,-34.125,

1264518160951:-4.399372,-1.4709976,0.54481393,104.625,68.8125,-35.875,

1264518161001:-3.050958,-1.4573772,0.58567494,105.0625,68.5625,-35.875,

1264518161051:-4.5491962,0.19068487,0.6537767,105.0625,67.8125,-35.375,

1264518161101:-6.7965536,1.3484144,0.87170225,105.5625,69.3125,-33.4375,

1264518161151:-12.993812,1.920469,1.253072,107.3125,70.3125,-30.4375,

1264518161201:-16.303556,0.53119355,0.14982383,106.8125,71.0625,-29.5,

1264518161251:-14.09706,-4.7535014,0.20430522,105.5625,71.0625,-29.0,

1264518161301:-10.746454,-4.971427,1.4709976,105.5625,70.3125,-30.1875,

1264518161351:-11.34575,-4.0588636,1.525479,104.125,70.5625,-32.9375,

1264518161401:-8.989429,-4.930566,0.88532263,103.375,70.8125,-35.125,

1264518161451:-6.4560447,-2.1111538,0.47671217,101.625,71.3125,-35.125,
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@RELATION activity
@ATTRIBUTE "Absolute Mean (series 0)" numeric
@ATTRIBUTE "Absolute Mean (series 1)" numeric
@ATTRIBUTE "Absolute Mean (series 2)" numeric
@ATTRIBUTE "Absolute Mean (series 3)" numeric
@ATTRIBUTE "Absolute Mean (series 4)" numeric
@ATTRIBUTE "Absolute Mean (series 5)" numeric
@ATTRIBUTE "Maximum (series 0)" numeric
@ATTRIBUTE "Maximum (series 1)" numeric
@ATTRIBUTE "Maximum (series 2)" numeric
@ATTRIBUTE "Maximum (series 3)" numeric
@ATTRIBUTE "Maximum (series 4)" numeric
@ATTRIBUTE "Maximum (series 5)" numeric
@ATTRIBUTE "Mean (series 0)" numeric
@ATTRIBUTE "Mean (series 1)" numeric
@ATTRIBUTE "Mean (series 2)" numeric
@ATTRIBUTE "Mean (series 3)" numeric
@ATTRIBUTE "Mean (series 4)" numeric
@ATTRIBUTE "Mean (series 5)" numeric
@ATTRIBUTE "Median (series 0)" numeric
@ATTRIBUTE "Median (series 1)" numeric
@ATTRIBUTE "Median (series 2)" numeric
@ATTRIBUTE "Median (series 3)" numeric
@ATTRIBUTE "Median (series 4)" numeric
@ATTRIBUTE "Median (series 5)" numeric
@ATTRIBUTE "Minimum (series 0)" numeric
@ATTRIBUTE "Minimum (series 1)" numeric
@ATTRIBUTE "Minimum (series 2)" numeric
@ATTRIBUTE "Minimum (series 3)" numeric
@ATTRIBUTE "Minimum (series 4)" numeric
@ATTRIBUTE "Minimum (series 5)" numeric
@ATTRIBUTE "Range (series 0)" numeric
@ATTRIBUTE "Range (series 1)" numeric
@ATTRIBUTE "Range (series 2)" numeric
@ATTRIBUTE "Range (series 3)" numeric
@ATTRIBUTE "Range (series 4)" numeric
@ATTRIBUTE "Range (series 5)" numeric
@ATTRIBUTE classi�cation {CLASSIFIED/VEHICLE/CAR, CLASSIFIED/IDLE/STANDING,

CLASSIFIED/VEHICLE/BUS, CLASSIFIED/WALKING, CLASSIFIED/IDLE/SITTING,
CLASSIFIED/WALKING/STAIRS/DOWN, CLASSIFIED/DANCING, CLAS-
SIFIED/WALKING/STAIRS/UP}

@DATA
0.44361898, 4.7165775, 8.409821, 10.608887, 10.081055, 16.005371, 5.5162406,

9.479762, 11.35937, 15.125, 1.4E-45, 1.4E-45, -0.44361898, 4.7165775, 8.409821,
10.608887, -10.081055, -16.005371, -0.19068487, 4.9169455, 8.7034025, 10.9375,
-9.875, -15.6875, -3.8273177, 1.4437568, 3.4187074, -0.0625, -18.6875, -23.0625,
9.343558, 8.036005, 7.940663, 15.1875, 18.6875, 23.0625, CLASSIFIED/VEHICLE/CAR

3.9024422, 2.722155, 8.665946, 12.640137, 3.3691406, 15.688477, 1.4E-45,
4.6036777, 15.649779, 15.125, 1.4E-45, 1.4E-45, -3.9024422, 2.722155, 8.665946,
12.640137, -3.3691406, -15.688477, -3.840938, 2.7240696, 8.499097, 12.6875, -
3.375, -15.6875, -7.518432, 1.0351465, 4.69902, 8.75,-5.875, -17.625, 7.518432,
3.5685313, 10.95076, 6.375, 5.875, 17.625, CLASSIFIED/VEHICLE/CAR

2.9535933, 1.9287692, 9.193417, 8.516602, 3.9960938, 16.75, 1.4E-45, 3.173541,
14.669114, 11.1875, 1.4E-45, 1.4E-45, -2.9535933, 1.9287692, 9.193417, 8.516602,
-3.9960938, -16.75, -2.901134, 2.083913, 9.275456, 8.5, -3.875, -16.875, -5.0803895,
0.50395286, 4.6445384, 5.5625, -6.625, -18.875, 5.0803895, 2.669588, 10.024576,
5.625, 6.625, 18.875, CLASSIFIED/VEHICLE/CAR

3.7644293, 0.39350045, 9.493064, 4.345215, 4.4628906, 17.933105, 1.4E-45,
2.002191, 15.704261, 10.75, 1.4E-45, 1.4E-45, -3.7644293, 0.39350045, 9.493064,
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4.345215, -4.4628906, -17.933105, -3.5957718, 0.50395286, 9.493382, 4.8125, -
4.375, -17.875, -8.567199, -1.3756552, 6.006573, -2.0, -7.125, -20.5625, 8.567199,
3.3778462, 9.697687, 12.75, 7.125, 20.5625, CLASSIFIED/VEHICLE/CAR

1.8751402, 2.4263377, 9.45008, 0.78222656, 5.080078, 16.560059, 1.4E-45,
3.8954194, 9.874752, 2.625, 1.4E-45, 1.4E-45, -1.8751402, 2.4263377, 9.45008,
0.78222656, -5.080078, -16.560059, -1.8387469, 2.587866, 9.425281, 0.9375, -
5.125, -16.625, -2.4789033, 1.334794, 9.220976, -1.3125, -6.625, -17.875, 2.4789033,
2.5606253, 0.65377617, 3.9375, 6.625, 17.875, CLASSIFIED/VEHICLE/CAR

1.7938437, 2.6545851, 9.423793, 0.110839844, 4.611328, 16.045898, 1.4E-45,
4.099725, 9.697687, 1.625, 1.4E-45, 1.4E-45, -1.7938437, 2.6545851, 9.423793,
0.110839844, -4.611328, -16.045898, -1.8115063, 2.7240696, 9.41166, 0.1875, -
4.625, -16.125, -2.5333846, 1.4437568, 9.248216, -1.0625, -5.625, -17.375, 2.5333846,
2.655968, 0.44947147, 2.6875, 5.625, 17.375, CLASSIFIED/VEHICLE/CAR
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Count User annotation On-device classi�cation

3 CLASSIFIED/DANCING
6 CLASSIFIED/IDLE/SITTING
2 CLASSIFIED/IDLE/STANDING
9 CLASSIFIED/UNKNOWN
31 CLASSIFIED/VEHICLE/BUS
11 CLASSIFIED/VEHICLE/CAR
1 10 CLASSIFIED/IDLE/SITTING
1 beed CLASSIFIED/VEHICLE/BUS
1 breathing CLASSIFIED/VEHICLE/BUS
1 cycle CLASSIFIED/VEHICLE/BUS
1 Dancing CLASSIFIED/WALKING
1 driving CLASSIFIED/WALKING/STAIRS/DOWN
1 drunkenly going to the bathroom to pee. CLASSIFIED/VEHICLE/CAR
1 �xing my clothes CLASSIFIED/VEHICLE/BUS
1 hhhg CLASSIFIED/VEHICLE/BUS
2 In a car CLASSIFIED/VEHICLE/BUS
1 in a house CLASSIFIED/VEHICLE/CAR
4 in bed CLASSIFIED/VEHICLE/BUS
2 it is a cat CLASSIFIED/VEHICLE/BUS
1 kitchen work CLASSIFIED/IDLE/STANDING
1 laundry CLASSIFIED/VEHICLE/CAR
1 lay in bed CLASSIFIED/VEHICLE/BUS
1 layin down CLASSIFIED/IDLE/STANDING
1 layin in bed CLASSIFIED/VEHICLE/BUS
3 laying down CLASSIFIED/VEHICLE/BUS
1 laying down CLASSIFIED/VEHICLE/CAR
1 laying down in bed CLASSIFIED/VEHICLE/BUS
3 laying in bed CLASSIFIED/VEHICLE/BUS
1 laying in bed with the phone on my stomach CLASSIFIED/VEHICLE/CAR
1 lie in bed CLASSIFIED/VEHICLE/BUS
1 ligger pa golvet CLASSIFIED/VEHICLE/BUS
1 love CLASSIFIED/VEHICLE/CAR
1 lying in bed CLASSIFIED/VEHICLE/BUS
1 moving phone CLASSIFIED/WALKING
1 Nothing at all! CLASSIFIED/UNKNOWN
1 passenger in car straight road 50mph CLASSIFIED/VEHICLE/BUS
1 playin gamw CLASSIFIED/VEHICLE/BUS
1 pooping CLASSIFIED/UNKNOWN
1 Rolling around CLASSIFIED/WALKING
1 Rotating the phone CLASSIFIED/WALKING/STAIRS/UP
1 seating down CLASSIFIED/VEHICLE/BUS
1 seting CLASSIFIED/VEHICLE/BUS
1 shake the device CLASSIFIED/VEHICLE/CAR
1 shaking my leg sitting on my bed CLASSIFIED/VEHICLE/BUS
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Count User annotation On-device classi�cation
1 shaking phone violently!!! CLASSIFIED/WALKING/STAIRS/UP
1 siq CLASSIFIED/VEHICLE/BUS
1 sitti CLASSIFIED/VEHICLE/BUS
1 Sitting CLASSIFIED/IDLE/SITTING
1 Sitting CLASSIFIED/IDLE/STANDING
19 Sitting CLASSIFIED/VEHICLE/BUS
6 Sitting CLASSIFIED/VEHICLE/CAR
1 sitting at my desk CLASSIFIED/VEHICLE/BUS
1 Sitting down CLASSIFIED/VEHICLE/BUS
1 sitting on my ass CLASSIFIED/VEHICLE/CAR
1 sitting on the couch CLASSIFIED/VEHICLE/BUS
1 sjxjxgzog CLASSIFIED/VEHICLE/BUS
1 sleep CLASSIFIED/IDLE/SITTING
2 sleeping CLASSIFIED/VEHICLE/BUS
1 Standing CLASSIFIED/VEHICLE/BUS
1 Standing CLASSIFIED/VEHICLE/CAR
1 swinging CLASSIFIED/IDLE/SITTING
1 test CLASSIFIED/VEHICLE/CAR
2 train CLASSIFIED/VEHICLE/BUS
1 traveling by bus CLASSIFIED/VEHICLE/CAR
1 traveling by car CLASSIFIED/VEHICLE/BUS
1 travelling by bus CLASSIFIED/VEHICLE/CAR
2 travelling by s line CLASSIFIED/VEHICLE/BUS
3 UNCLASSIFIED/NOTCORRECTED CLASSIFIED/DANCING
69 UNCLASSIFIED/NOTCORRECTED CLASSIFIED/IDLE/SITTING
29 UNCLASSIFIED/NOTCORRECTED CLASSIFIED/IDLE/STANDING
32 UNCLASSIFIED/NOTCORRECTED CLASSIFIED/VEHICLE/BUS
14 UNCLASSIFIED/NOTCORRECTED CLASSIFIED/VEHICLE/CAR
16 UNCLASSIFIED/NOTCORRECTED CLASSIFIED/WALKING
5 Walking CLASSIFIED/VEHICLE/BUS
1 Walking CLASSIFIED/VEHICLE/CAR
1 Walking (downs tairs) CLASSIFIED/WALKING/STAIRS/UP
1 walking in a store CLASSIFIED/VEHICLE/CAR
1 walking in circles CLASSIFIED/VEHICLE/CAR
1 watching amovie! CLASSIFIED/VEHICLE/BUS
1 watching TV CLASSIFIED/VEHICLE/BUS
1 work in the airport CLASSIFIED/VEHICLE/CAR
1 z CLASSIFIED/VEHICLE/BUS

Tab. 4: User-annotated Sensor Logger results
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