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A c t i v i t y - B a s e d  C o m p u t i n g

Wearable Activity 
Tracking in Car 
Manufacturing
A context-aware wearable computing system could support a production 
or maintenance worker by recognizing the worker’s actions and 
delivering just-in-time information about activities to be performed. 

W earable computing systems 
should provide unobtru-
sive access to the IT infra-
structure, so they should 
be physically unobtrusive, 

leave users’ hands free, and allow freedom of 
motion. In an industrial scenario, they must 
also minimize workers’ cognitive load and 
avoid distracting them from their primary tasks 
(see the sidebar “Related Work in Wearable 
Computing in Industrial Environments”). An 
appropriate user interface design can partially 
accomplish this. A better solution, however, is a 
proactive context-aware system that uses unob-
trusive sensors to track each step of the per-

formed task and presents the 
worker with the information 
needed at any given moment.

Little research has focused 
on complex activity recogni-
tion for industrial applications. 
In this field, system reliability 
and robustness are essential. 
We’re working to develop and 

test such real-life industrial activity tracking 
systems as part of the European Union’s 4.5-
year-long wearIT@work project.1 To this end, 
we conducted two case studies in cooperation 
with the European car manufacturer Skoda. 
Our first study involved context-aware worker 
training at a dedicated learning island, which 
consisted of an instrumented car body. The sec-
ond considered wearable assistance for quality 
control in the production line, where workers 
use on-body sensors only. 

After observing and videorecording work-
ers in the Skoda factory, we made the first data 
recordings onsite. Because such recordings dis-
rupt the production process, causing large costs, 
we recreated the environments in our lab using 
original tools, cars, and procedures. We brought 
an entire car body, identical to the Skoda learn-
ing island, into our premises. Also, Skoda pro-
vided us with a complete new car on which to 
reenact the quality-control steps from the videos 
and observations. 

Based on experiments performed in these 
setups over the last two years, we present an 
overview of the challenges and approaches as-
sociated with using complex multimodal sen-
sor systems for activity tracking in production 
environments. 

Training assembly-line workers
Currently, Skoda assembly-line workers follow 
a two-step training process. First, they receive 
classroom instruction on the theoretical back-
ground of car assembly. Next, they practice on 
a learning island consisting of a specially pre-
pared car body that allows repeated assembly 
and removal of relevant components. A supervi-
sor assesses trainees’ progress and decides when 
they’re ready for the assembly line.

Our industrial partners’ workplace studies re-
vealed that workers can benefit from combining 
the theoretical and practical steps. Wearable as-
sistance could give trainees online instructions 
about upcoming assembly steps while they’re 
at the learning island, thereby streamlining the 
training. Devices could also provide warnings 
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when the worker doesn’t properly fol-
low the procedure and automatically 
generate a training score. Realizing such 
a system requires unobtrusively recog-
nizing and tracking the detailed assem-
bly steps from the worker’s actions.

Experimental setup
We developed task-tracking methods on 
the learning island in our laboratory. The 
task we chose for our experiments—in-
stallation of the front lamp—is represen-
tative of a wide range of assembly tasks 
in terms of complexity. The task involves 
manipulative gestures, the use of hand-
operated tools, and many interactions 
between the car body and assembly 
parts. It consists of four phases: 

inserting the lamp, 
mounting a supportive plastic bar 
using three screws and a cordless 
screwdriver, 
attaching the lamp body using two 
screws and a cordless screwdriver, and 
verifying the lamp’s adjustment. 

Tracking approach
We rely on sensors placed on the body 
and on the car to detect assembly steps 
(see figure 1). We augment tools with 
RFID tags to detect which ones workers 
are using (for example, a cordless screw-
driver). An RFID reader placed between 
a worker’s thumb and index finger picks 
up this information. We detect when a 
worker grasps tools or assembly parts 
from muscle contraction, captured by an 
array of force-sensitive resistors (FSRs) 
integrated into a strap worn around the 
lower arm. We infer when screws are 
completely tightened by detecting the 
onset of the screwdriver’s torque limiter. 
This onset causes the tool, and the hand 
holding it, to shake and vibrate. We pick 
up this information with an Xsens iner-
tial measurement unit (IMU), mounted 
on the back of the palm.

FSRs placed next to screw joints de-

•
•

•

•

tect the attachment of assembly parts, 
such as the lamp body and the support-
ive plastic bar, by indicating the tight-
ening of the corresponding screw. A 
magnetic switch placed inside the lamp 
cavity lets us know when the lamp is 
inserted. We also mount magnetic 
switches on the car body to detect when 
the worker verifies the lamp adjustment 
using a special alignment tool.

We use a combination of sensor mo-
dalities whenever possible to improve 
robustness. For instance, detecting a 
tool with the RFID reader, hand grasp-
ing with FSRs, hand vibration with 
IMUs, and screw pressure with car-

mounted FSRs all convey bits of infor-
mation that, combined, help us achieve 
robust activity recognition. Figure 2 il-
lustrates sensor processing and fusion.

Modeling assembly tasks
We modeled the assembly process to 
map sensor information to assembly 
steps. We developed a task-modeling 
scheme akin to a finite state machine 
(FSM) with two elements: 

states, which correspond to defined 
assembly steps, and
transitions, which indicate the pos-
sible sequences of states.

•

•

I n the October–December 2002 issue of IEEE Pervasive Computing, Vincent Stanford 
described early work on the deployment of wearable computing in industrial envi-

ronments,1 such as Boeing’s pioneer work on wearable-computing-based guided as-
sembly.2 Several projects have used head-mounted displays and wireless technology 
to provide remote information access during maintenance work.3 More recent work 
tried to combine wearable computing with virtual or augmented reality to support 
the worker.4 Hendrik Witt and his colleagues tackled the question of how to interface 
a wearable system hands-free.5 To give users proactive instructions during furniture 
assembly, Stavros Antifakos and his colleagues augmented parts and tools with sen-
sors such as accelerometers, gyroscopes, and force-sensitive resistors.6
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Sensor signal conditions (that is, spe-
cific events or worker activities) trigger 
transitions between steps, effectively 
fusing multimodal sensor data. 

Figure 3 details the tracking module 
and highlights the four lamp-assembly 
phases, which together take a worker 
about four minutes. 

As an example, assume the FSM is 
in state start and the worker inserts the 
front lamp into the car body. Magnetic 
switch D1 detects the activity and the 
current state becomes lamp inserted. 

The worker then attaches a supportive 
plastic bar. After the worker tightens 
one of the three screws (A1, A2, or A3, 
detected by FSRs) with the appropri-
ate screwdriver (RF1, detected by the 
RFID reader), the model transitions to 
state 1 bar screw, provided that the FSR 
detected the grasping action (G) and the 
vibration (V). A detailed description of 
this platform appears elsewhere.2

Lessons learned
In this case study, we gained knowledge 

about sensor usage and task modeling 
in a realistic industrial setup.

Sensors. Several developers have sug-
gested that redundant, multimodal sen-
sor systems are crucial to reliable rec-
ognition of complex real-life activities.3 
Our work confirms this assertion on a 
particularly complex and diverse sen-
sor system. The sensors on the car body 
are essential for the recognition task, 
whereas the wearable sensors mainly 
increase the system’s robustness. 

We made several findings about the 
individual sensor domains. First, the 
RFID reader’s location is critical to 
obtaining a good coupling of the read-
er’s antenna with the tags on the tools. 
Placing the reader between the thumb 
and index finger results in reliable user- 
independent operation. 

Second, the FSR muscle activity strap’s 
detection threshold is difficult to deter-
mine. Considerable variability exists 
among workers but also between grasping 
activities performed by the same worker, 
requiring user-specific calibration. 
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Figure 2.  Sensor data processing and multimodal sensor fusion architecture.
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Figure 1. Sensors used in the training 
case study. The RFID reader, force-
sensitive resistor (FSR) strap, and inertial 
measurement unit are on-body sensors; 
the magnetic switches and FSR sensors 
are environmental sensors.
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In addition, detecting the torque limit-
er’s onset from the inertial sensor proved 
difficult, requiring sufficient mechanical 
coupling between hand and tool. This 
coupling depends on the worker’s grasp-

ing strength and the angle between hand 
and tool (that is, it’s user dependent). 
Placing the IMU directly on the tool 
might remove this constraint. 

We also observed that the FSRs 

mounted next to screw joints on the 
car body performed reliably after ini-
tial calibration. The magnetic switches 
worked properly after initial adjust-
ment without any further calibration. 
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Figure 3. Front-lamp assembly. (a) We use a finite state machine to model the four phases of front-lamp assembly. The letter/
number combinations (for example, D1) along the arrows define the logical condition that must exist to trigger the transition 
between the corresponding two states. A slash represents the logical operator NOT and an asterisk means AND. We combine 
individual logical conditions (such as A4 and A5 for analog FSR sensors) to more complex logical expressions such as “/A4 * /A5” 
((NOT A4) AND (NOT A5)). (b) The photographs illustrate each phase’s manipulative activity.

Authorized licensed use limited to: Imperial College London. Downloaded on November 26, 2009 at 00:30 from IEEE Xplore.  Restrictions apply. 



46	 PERVASIVE computing� www.computer.org/pervasive

Activity-Based Computing

Finally, it takes one expert about 
half a day to mount and interconnect 
the sensors for the front lamp assem-
bly task. So, this approach is restricted 
to a training environment in which the 
same instrumented car is used to train 
generations of workers. Currently, the 
learning island handles 18 training 
tasks of diverse complexity, requiring 
about one week of sensor installation 
and calibration. The number of neces-
sary sensors scales linearly, and we esti-
mate that we’d need about 120 sensors 
to detect all the tasks in the complete 
training program. 

Our project partners performed a 

user study using Wizard-of-Oz tech-
niques with a mock-up of our sensors 
to simulate the task tracking. The study 
revealed that the body-worn sensors 
didn’t hamper workers in their primary 
task. Yet sensors were always notice-
able, leaving room for future miniatur-
ization and integration.

Task model. We considered approaches 
in which the system learns the behavior 
sequence from repeated task execution. 
To assign training material like pictures 
and videos to corresponding parts of the 
procedure, however, we’d need to iden-
tify specific assembly steps. Together 

with the well-defined activity structure, 
this requirement led us to consider the 
FSM approach. Our FSM approach re-
quires perfect sensor operation because 
it doesn’t contain probabilistic elements. 
However, the sensor reliability was high, 
leading to recognition rates close to 100 
percent—that is, several users could suc-
cessfully track the assembly task from 
start to finish. To allow for some sensor 
failure, we could introduce fuzzy opera-
tors or probabilistic methods.

Contextual support  
in the assembly line
The last stage of car assembly is the 
quality-assurance checkpoint. The 
workers inspect the car and verify the 
functionality of user-accessible parts 
(doors, locks, seats, and so on). They 
carry paper sheets with fault matri-
ces comprising a list of possible faults 
at all positions on and inside the car. 
They selectively read these sheets to 
find special characteristics of the car 
under inspection, such as nonstandard 
configuration (for example, steering 
wheel on the right side). If they detect 
a fault or any deviation from the car 
specification, they register it in the 
fault matrices.

A study from our industrial project 
partners revealed two important func-
tionalities of wearable assistance in this 
scenario. 

The system should raise warnings 
whenever a worker misses a step in 
the checking procedure. 
Workers should be able to enter de-
tected faults directly into the elec-
tronic database. 

•

•

(b)(a)

(d)(c)

(f)(e)

Figure 4. Six checking activities. Workers 
(a) open the trunk, (b) close the engine 
hood, (c) open the back right door,  
(d) check the fuel filler cap mechanism, 
(e) open both right doors, and (f) check 
gaps at the front left door. The stick 
figures above each activity represent 
workers’ upper body postures during task 
execution, captured by our motion jacket.
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To minimize disturbances, the fault-
entry system should have a context-
aware interface that implicitly recognizes 
the location and, potentially, the type 
of detected fault. False positives aren’t 
critical in this scenario because a simple 
confirmation mechanism could remove 
them based on speech recognition.

Task-tracking requirements
The key mechanism for enabling these 
functionalities is the automatic recog-
nition of individual checking activities. 
Using quality-control lists and in situ 
observations of Skoda’s process, we 
identified 46 trackable activities that 
form a complete, seven-minute check-
ing procedure. Figure 4 illustrates some 
of these activities. 

Sensor setup
Unlike in the training scenario, here 
tracking relies on body-worn sensors 
only because instrumenting cars in pro-
duction is unfeasible. Figure 5 depicts 
the motion jacket we developed to in-
tegrate the required sensor modalities 
in an unobtrusive and robust working 
jacket. We capture the worker’s upper 
body motion from seven IMUs within 
the jacket. The IMUs are on the lower 
and upper arms, the torso, and the back 
of the gloves. Two data-acquisition units 
collect the data from these IMUs. The 
IMUs let us capture arm and hand mo-
tion, which provides information about 
the worker’s activity. We pick up the 
lower arms’ muscle activity using cus-
tom-made thin sleeves equipped with 
arrays of FSRs. To estimate the work-
er’s relative position to the car body, we 
use an ultrawideband system from Ubi-
sense. Tags on the worker’s shoulders let 
the system calculate the worker’s posi-
tion with respect to four reference trans-
mitters placed around the car. 

Experiments
As we mentioned earlier, we first collected 
data in situ at the Skoda production facil-
ity. A worker wearing our motion jacket 
performed the checking procedure on 10 
cars while they were moving on the con-
veyor belt. We used these recordings to 
prove our sensor system’s reliability and 
robustness under real-life conditions. In 
addition, we observed and filmed several 
other workers performing the procedure 
for later analysis. 

Using our recreated setup (including 
the Skoda car), we recorded a data set 
with eight subjects (students, instructed 
from the video material). Each subject 
conducted 10 repetitions of the checking 
procedure. One experimenter annotated 
the start and end points of activities to 
provide an absolute reference (ground 
truth), while a second experimenter an-
notated the user’s location ground truth 
simultaneously, both using the context 
recognition network toolbox4 to syn-
chronize the annotation streams with 
the data streams. We collected about 
3,680 checking activities within 560 
minutes of data. Figure 6 illustrates the 
recorded FSR and IMU signals.  

Recognition of checking activities
Our data set contains a considerable 
amount of the null class (out of the 
560 minutes of data collected, only 

320 minutes cover actual activities). 
This includes all gestures and move-
ments not directly related to a specific 
checking activity (for example, tran-
sitions between activities). Instances 
of identical activity classes can have 
different lengths and show variabil-
ity (for example, the red FSR data 
of class “open trunk” in figure 6a), and 
data from different activity classes 
can show similarities (for example, 
the blue FSR data of classes “open 
trunk” and “close engine hood” in figure 6a 
and 6b). We segment the signal into 
interesting portions likely to contain 
an activity before classifying the data 
(see the “Activity Tracking” sidebar). 
These steps’ algorithmic complexity 
must remain tractable for wearable 
computers with limited computa-
tional power.

To address these issues, we rely on 
cross-domain segmentation, which, for 
example, uses information about worker 
location and muscle activity to segment 
motion data. We also developed a new 
activity recognition algorithm, inspired 
by approximate string matching, that 
can perform signal segmentation and 
classification in a single step (see the “Ac-
tivity Tracking” sidebar).

Lessons learned
We gained valuable experience from 

Torso IMU

Upper-arm IMU

Lower-arm IMU

Sensor sleeve

Hand IMU

IMU data acquisition and transfer,
power supply

Integrated
sensor sleeve

Figure 5. Our motion jacket is fully 
integrated into a standard worker’s 
jacket. Seven inertial measurement units 
(IMUs) capture the worker’s upper-body 
motion.
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the checkpoint case study, which we 
think can be useful for other research-
ers working in the same field.

Data acquisition and annotation. We 
recorded data from 27 on-body sen-
sors (seven IMUs, eight FSRs on each 
arm, and four Ubisense tags) running 
at different sampling frequencies while 
the worker freely performed a sequence 
of 46 diverse, at times subtle, activi-
ties. Generating a properly annotated, 
synchronized data stream was a major 
challenge. Our strategy included

a hierarchical approach that synchro-•

nizes sensors belonging together as 
early as possible in the processing 
chain, preferably in hardware (this 
gave us five sensor groups: two IMU 
groups, two FSR arrays, and the Ubi-
sense tags); 
dedicated software (the context rec-
ognition network toolbox) to syn-
chronize the data from the five sensor 
groups together with the annotated 
labels during data collection; 
two experimenters working on sepa-
rate, synchronized computers for the 
ground-truth annotation (activity 
plus location); and
a continuous video record of all ex-

•

•

•

periments to help us cope with poten-
tial labeling errors a posteriori. 

Sensors. The motion jacket proved to 
be of great help with the recordings at 
the Skoda assembly plant. The workers 
didn’t report any issue working with 
it. This confirmed our idea that em-
bedding sensors into standard worker 
clothes would provide unobtrusive ac-
tivity sensing. In our lab with the non-
moving car, the location estimation sys-
tem’s spatial resolution lies within the 
expected range of about 20 centimeters 
of absolute distance. In the production 
line, where we covered a working area 
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shows the hand position and corresponding encoded string representation. The shaded areas illustrate the manually annotated 
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of 6 meters × 20 meters, the resolution 
is somewhat lower. The lower resolu-
tion is caused by stronger multipath 
propagation because of reflections, but 
it’s still sufficient to discern the defined 
location classes around the cars on the 
conveyor belt.

Gesture segmentation and classifica-
tion. We found that mere analysis of 
a single sensor domain isn’t sufficient 

to spot workers’ checking activities. 
So, we developed a multimodal seg-
mentation method in which we use the 
information from one sensor domain 
to segment data in another sensor do-
main, effectively merging information 
from motion, muscle activity, and lo-
cation. Our new string-matching-based 
method for spotting activities in con-
tinuous data streams has led to some 
promising results: On a subset of six 

activity classes, we reach a 74 percent 
accuracy rate in a 560-minute-long re-
cording. This data set contains 480 rel-
evant activity instances that all summed 
up are performed in 35 minutes.

I ndustrial production is an attrac-
tive but demanding application 
field for activity recognition. Our 
work is an initial step toward 

T he first step of activity recognition is segmenting the 
continuous data stream by identifying sections that 

could contain meaningful activities. This is usually challenging 
because of the predominance of nonrelevant sections in the sig-
nal. Several methods for segmentation appear in the literature. 
These include hidden Markov models (HMMs),1 dynamic time 
warping,2 and methods based on feature similarity,3 all of which 
are greedy in terms of computational complexity. 

The second step is classifying the identified segments. You 
can use various classification algorithms: instance-based classifi-
ers (such as nearest neighbor or nearest class center), rule-based 
classifiers (such as C4.5), stochastic approaches (such as HMM), 
or linear classifiers (such as support vector machines). 

To recognize activities on wearable devices with limited com-
putational power, we developed a string-matching-based seg-
mentation and classification method that relies only on simple 
arithmetic operations.4 Figure A illustrates the method’s key pro-
cessing steps. We capture and encode upper-body motion into 
a continuous string in which each character represents a distinct 
part of the motion (figure A1). We then match activity templates 

with this motion string (figure A2) using the operations equality 
(=), substitution (s), deletion (d), and insertion (i).

This gives a matching cost that indicates the similarity be-
tween the motion string and the activity template. As soon as the 
matching cost drops below a trained threshold, the method infers 
an activity occurrence of the corresponding template (figure A3). 
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Figure A. Our string-matching-based segmentation and classification method: (1) upper-body-motion encoding using a 

codebook of quantized direction vectors; (2) activity-template matching with the continuous motion string, producing matching 

costs (C); and (3) activity spotting in the continuous matching costs (C1).
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harnessing such applications. It has re-
vealed several interesting insights: 

A good way to approach activity rec-
ognition in production environments 
is to start in a training setup, where it’s 
easier to extensively augment the envi-
ronment. In addition, collecting realis-
tic data sets is less problematic during 
training than in production tasks. 
You can often place simple sensors in 
such a way that (nearly) unique signal 
combinations map to the individual 
activities. If you combine this with 
appropriate task modeling, you can 

•

•

achieve near-perfect recognition of 
even complex tasks, as our training 
scenario shows. 
In production, sensing is largely lim-
ited to body-worn sensors. Because 
many production activities are de-
fined by a combination of body pos-
ture, arm and hand activity, and the 
worker’s position with respect to the 
assembly line, our sensor combina-
tion is broadly applicable.
Realistic recreation of production 
conditions in the lab involves consid-
erable effort (in our case, it involved 
bringing entire cars into the lab). 

•

•

However, it’s a worthwhile strategy 
if you need to collect large data sets. 
Using a large number of sensors is 
important for robust recognition, 
but it makes data collection difficult. 
So, you must carefully plan synchro-
nization and labeling. Hierarchical 
synchronization, adequate streaming 
tools, and strict, redundant labeling 
protocols are crucial. 

The next step in our work is a de-
tailed evaluation of the quality-control 
data set. We’re working on combining 
three sensor modalities (motion, mus-
cle activity, and location) by fusing seg-
mentation results from different sensor 
sources to complement the distributed 
pieces of information. The evaluation 
of our segmentation method will use 
such standard measures as correct, de-
letion, substitution, and insertion rates. 
The final goal is a reliable real-time rec-
ognition system.
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