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C O N T E X T - A W A R E  C O M P U T I N G

Inferring Activities 
from Interactions 
with Objects
Recognizing and recording activities of daily living is a significant
problem in elder care. A new paradigm for ADL inferencing leverages
radio-frequency-identification technology, data mining, and a
probabilistic inference engine to recognize ADLs, based on the objects
people use.

A
key aspect of pervasive computing
is using computers and sensor net-
works to effectively and unobtru-
sively infer users’ behavior in their
environment. This includes inferring

which activity users are performing, how they’re
performing it, and its current stage. The elder-

care field is a prime, yet difficult
application area for inferring
whether and how people with
early-stage cognitive decline are
performing activities of daily
living.1 (For more on ADLs, see
the “Activities of Daily Living”
sidebar.)

Recognizing ADLs, particu-
larly in the home, is challenging
on several fronts. First, because
users can perform ADLs in var-
ious ways, models of activities

and recognition software must adapt to this vari-
ety. Second, the underlying sensors must report
the features required of them robustly across var-
ious sensing contexts (such as light levels, sound
levels, and locations). Third, given the large num-
ber of ADLs—20 to 30 classes (such as making a
meal) with thousands of instances—a system
should model each activity with minimum human
effort. Addressing these challenges simultane-
ously has been a key barrier to success for ADL-
monitoring systems.

We propose an approach that addresses these

challenges and shows promise in automating some
types of ADL monitoring. Our key observation is
that the sequence of objects a person uses while
performing an ADL robustly characterizes both
the ADL’s identity and the quality of its execution.
So, our Proactive Activity Toolkit (PROACT)

• Represents activities as a probabilistic sequence
of objects used

• Adapts a cheap, durable, easy-to-use sensing
technology to robustly sense the objects being
used across various sensing and use contexts

• Mines probabilistic models of activity use from
plain English descriptions of activities, such as
recipes

PROACT

Our system has three components: specialized
sensors to detect object interactions, a proba-
bilistic engine that infers activities given obser-
vations from sensors, and a model creator that
lets us easily create probabilistic models of activ-
ities. (The “Related Work in ADL Inferencing”
sidebar describes related research.)

Sensors
We tag objects of interest using radio-fre-

quency-identification (RFID) tags, which we can
attach unobtrusively onto objects as small as a
plastic fork. These tags are postage stamp sized,
durable, battery free, and inexpensive (US$0.40
each and falling). When interrogated by a reader,
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they respond with a globally unique
identifier. Researchers have investigated
the limited use of RFID-tagged objects
in user interfaces before,2 but they’re
now so cheap and the readers are so
small that qualitatively different use sce-
narios are feasible. RFID tags’ durability
and their ability to be placed out of sight
make them particularly well suited for
ADL monitoring of elders with early-
stage dementia, who tend to disassem-
ble foreign objects.

The tags’ greatest advantage is that
they naturally report data at the object
level. The best long-term solution will be
an integrated approach that augments
RFID information with other sensor
streams to fill in the gaps—for example,
an audio monitor for analyzing a baby’s
noises. Here, we report on an RFID-only
approach, with the goal of understand-
ing its features and shortcomings.

Even with arbitrarily cheap tags, no
one is going to tag every sock or ice
cube. We can achieve the needed func-
tionality by tagging dispensers and con-
tainers such as a sock drawer or ice tray.

The more tagged objects, the more pow-
erful the inferencing and the more
detailed the caregiver’s report. The fewer
tagged objects, the lower the cost and
the shorter the deployment time. Any
particular house or user can assess that
trade-off as desired. We can boost a sys-
tem later by adding more tags at points
of interest if and as desired. Tagging an
object involves sticking an RFID tag on

it and making a database entry mapping
the tag ID to a name. Emerging stan-
dards might soon make the database
entry unnecessary (see the EPC Global
Web site, www.epcglobalinc.org).

To sense tags, we used a glove-based
RFID reader, built from commercial
parts. The user wears a prototype glove
with an RFID-detecting antenna in the
palm (see Figure 1). The antenna is 
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T he healthcare community distinguishes between activities of

daily living (ADLs), which don’t involve interactions with instru-

ments (such as telephones and appliances),2 and instrumental activi-

ties of daily living (IADLs), which do.1 However, the standard practice

(which we follow) is to use ADL generally to refer to both sets.

ADL monitoring has become a common, valued technological

goal for three reasons. First, ADL monitoring is an important activity

in health care. For example, in the US, any nursing home that

receives Medicare funds must record and report ADLs. Trained care-

givers spend considerable time measuring and tracking ADL accom-

plishment. This monitoring is time consuming, error prone, and in-

vasive.3 Automated aids that can augment caregiver work practice

are of great interest. We stress that our inferencing isn’t designed to

replace caregivers but to let them focus their attention on caregiving.

Second, ADLs are general—they’re common activities that people

perform daily and have potential interest outside the elder-care field.

Finally, home ADLs are challenging to recognize owing to the

number of activities people perform, the number of ways they

perform those activities, and the difficulty of deploying sensing

technology (as opposed to, for example, measuring office com-

puter activity). ADL recognition also has a higher burden for main-

taining privacy owing to the intimate nature of the activities and

environment.
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Activities of Daily Living

Figure 1. An RFID-detecting glove.



connected to a SkyeTek RFID reader,
packaged with a Crossbow Mica Mote
radio, a USB-based power supply, and a
rechargeable battery. All components

except the antenna are housed in the
small box on the glove. The reader sam-
ples the environment twice a second; any
RFID seen is broadcast to an HP iPaq

5400, used as a wearable computer. The
iPaq either stores the data onboard for
future analysis or forwards it via Wi-Fi
to the inference engine running on a
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A number of researchers have investigated ADL inferencing.

Alex Mihailidis, Geoff Fernie, and Joseph Barbenel success-

fully used cameras and a bracelet to infer hand washing.1 Dadong

Wan used radio-frequency-identification (RFID) tags functionally as

contact switches to infer when users took medication.2 Tracy

Barger and her colleagues used contact switches, temperature

switches, and pressure sensors to infer meal preparation.3 Quan

Tran, Khai Truong, and Elizabeth Mynatt used cameras to infer

meal preparation.4 Anthony Glascock and David Kutzik used

motion and contact sensors, combined with a custom-built med-

ication pad, to get rough inference on meal preparation, toileting,

taking medication, and up-and-around transference.5 Ilkka Korho-

nen, Paula Paavilainen, and Antti Särelä used a custom wearable

computer with accelerometers, temperature sensors, and conduc-

tivity sensors to infer activity level.6 Michael Mozer used 13 sensors

to infer home energy use, focusing on the heating-use activity.7

Eric Campo and Marie Chan used motion detectors to infer rough

location.8 Valerie Guralnik and Karen Haigh used motion sensors,

pressure pads, door latch sensors, and toilet flush sensors to infer

behavior.9

These systems have all had to perform high-level inferencing

from low-level, coarse sensor data reporting. Some have added

special pieces of hardware to help surmount this, but progress

toward rigorous ADL detection has nevertheless been slow. Only a

few researchers have reported the results of any preliminary user

testing,1,5,8,9 and all but one report1 are anecdotal. The level of

inferencing has often been limited—for example, reporting only

that a person entered the living room and spent time there. Al-

though each of these difficult investigations has been valuable,

they lack interconnection and generality. Research tuned to detect-

ing hand washing or tooth brushing have had nearly no synergy,

each using its own set of idiosyncratic sensors and algorithms on

those sensors. A home deployment kit designed to support all these

ADLs would be a mass of incompatible and noncommunicative

widgets. Our approach instead focuses on a general inferencing

and sensor capability that we can use for many ADLs. Although ini-

tial performance will be worse than tailored algorithms for a partic-

ular activity, our approach applies across multiple ADLs, and we

can tune it with experience and use additional sensors as needed to

improve its performance.

A new approach, similar in spirit to ours, is the research on MIT’s

House_n project (http://architecture.mit.edu/house_n). Like ours,

this project places a single type of object-based adhesive sensor in

structurally unmodified homes. Sensor readings are later analyzed

for various applications—kitchen design, context sampling, and

potentially ADL monitoring. These researchers share our contention

that fine-grained measurement of object use is a good indicator of

activity. Our work differs from theirs in two key ways. First, we adapt

sensors that we can attach unobtrusively to objects as small as

spoons and toothbrushes and that require no battery; they use bat-

tery-powered sensors more suited for tagging larger objects such as

cupboards and stoves. Second, we let programmers describe activi-

ties in ordinary English and provide automatic means to convert

these descriptions into formal models.
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workstation. The reader lasts for two
hours at this duty cycle.

Although for many applications and
users, using such a glove would be prob-
lematic, we believe this problem is tem-
porary. Three years ago, Albrecht
Schmidt, Hans-Werner Gellersen, and
Christian Merz proposed a portable
RFID glove as a user interface that mea-
sured roughly 160 cm3 and wasn’t wire-
less.2 Our latest version is a little more
than 30 cm3 and wireless. In a few years,
portable RFID readers will likely fit into
a large wristwatch or bracelet and will
be feasible for ADL monitoring.

Activity models: Structure and
inference

PROACT represents activities as linear
sequences of activity stages. For exam-
ple, we can model the making of tea as a
three-stage activity: boil the water; steep
the tea in the water; and flavor the tea
with milk, sugar, or lemon. We annotate
each stage with the objects involved and
the probability of their involvement. For
example, in the first stage, we might
expect to see a kettle and water, with high
probability. In the third stage, we might
expect to see sugar, lemon, or milk, but
each with a lower probability. The prob-
abilities need not sum to one. This prob-
ability combines three sources of ambi-
guity: sensor error (for example, the tag
is missed), model error (for example,
some objects aren’t known to the model),
and modeling generality (for example, an
object is sufficient but not necessary).
Each stage might also optionally have a
time to completion modeled as a Gauss-
ian probability distribution. For exam-
ple, we might indicate that the boiling
stage takes on average three minutes with
a standard deviation of two minutes.

The probabilistic engine converts these
activity models into dynamic Bayesian
networks. By regarding the current sub-
activity as a hidden variable, and the set
of objects seen and time elapsed as

observed variables, we can probabilisti-
cally estimate the activities from sensor
data with the general technique of Bayes
filtering. We use a type of sequential
Monte Carlo approximation to proba-
bilistically solve for the most likely activ-
ities. To solve the activity models we’ve
sketched, we could use simpler hidden-
Markov-model-based inference. How-
ever, using the more complex DBN infra-
structure lets us explore complications
such as partial (as opposed to total)
order between activity steps and a some-
what nonstandard (but natural) inter-
pretation of time to completion. (Further
details appear elsewhere.3)

Model creation
Activity inferencing requires a model

that defines an activity: how many stages

it has and how sensor data determines
the transitions between stages. These
models are typically difficult to create
without intensive hand tuning, owing
again to the low-level nature of the input
that guides the state transitions—for
example, a change in the pattern of
accelerometer input.

Because our raw sensor data is high
level (the names of objects), we can
transform high-level activity descriptions
into formal models. In particular, the
programmer provides a step-by-step
English description of the activity in the
format commonly used for specifying
recipes or how-tos. We use lightweight
natural-language-processing techniques
to convert each step into a stage in our
activity model, and we use the set of
objects mentioned in the step as the set

of objects involved in that activity. We’ve
also mined existing recipes and how-tos
using this technique; details appear else-
where.4

Once we specify the objects involved
in each stage, we must define the object
involvement probabilities. Intuitively,
these describe the probability of using
the object in that activity state. For
example, making tea always involves tea
and water but only occasionally involves
sugar. Requiring humans to specify these
probabilities is time consuming (consider
all the potential objects involved in mak-
ing a meal) and difficult (what percent-
age of sandwiches involve ham?).

Instead, PROACT automatically deter-
mines these probabilities. Our method
relies on a mirror assumption: if an activ-
ity name co-occurs often with some

object name in human discourse, then
the activity will likely involve the object
in the physical world. Our approach is in
the spirit of previous research that used
word associations on the Web to resolve
ambiguities and determine world rele-
vancies.5 We use them as a model of
relatedness in human activity. We pos-
tulated that if an activity A occurs on n1
Web pages (the best extant approxima-
tion of human discourse), and n2 pages
contain the activity and an object T, then
the involvement probability for T in A
is approximately equal to n2/n1. We
obtain these numbers via the Google
API. This assumption can fail, but in our
experience it suffices to generate a good
set of probabilities, especially as we need
only the terms’ relative, not absolute, fre-
quencies. We used the probabilities

OCTOBER–DECEMBER 2004 PERVASIVEcomputing 53

Once we specify the objects involved in each

stage, we must define the object involvement

probabilities. Intuitively, these describe the

probability of using the object in that activity state.



unchanged in our experiment. (A more
detailed exploration appears else-
where.4) The probabilities can evolve
with time in response to learning or can
be tuned to a particular elder (for exam-
ple, for some, the percentage of sand-
wiches with ham is 0).

This framework, although naturally
suited for object interaction reports, isn’t
limited to them. For example, it can eas-
ily accommodate location reports by
using location words and specifying their
involvement probabilities. This lets the
engine realize that, for instance, touching
toilet paper in the kitchen more likely
indicates unpacking than toileting.

Testing the concept
The prototype nature of the RFID

detector makes a true deployment with
elders in cognitive decline presently
infeasible. However, we can test the
approach’s validity by asking a slightly
different question: if we could reliably
detect interactions with RFID-tagged
objects, could we infer ADLs? We did
this test. Although PROACT can accom-
modate other types of sensor data, for
this test we restricted ourselves to object
interaction reports.

Choosing the ADLs
Of the more than 20 ADLs that care-

givers can monitor, we chose 14 for eval-
uation (see Table 1). We eliminated the
rest because the subjects in our experi-
ment performed their tasks in another
person’s home; therefore, we excluded
ADLs such as bathing or shopping. The
14 ADLs we tested are, to our knowl-
edge, 11 more than any other system has
attempted.

We took this set of activities, with all
their vagueness and overlap (consider
personal appearance versus oral hygiene
versus washing up, for example) as a set
of givens. We didn’t narrow or constrain
the activity definitions.

Procedure
We wanted to use as realistic a home

setting as possible. In a perfect world, we
would have instrumented the houses of
each of our subjects, but this was
impractical. Instead, we chose a house
inhabited by one of the authors, his wife,
and their two-year-old child. Using a sin-
gle house has disadvantages. Subjects
weren’t in their own homes, and we
couldn’t do a longitudinal study. How-
ever, we feel this was a valid compro-

mise. Several subjects mentioned that
because they weren’t observed and were
in a real house, they felt relaxed and at
ease, and therefore acted more naturally.
We instrumented the home with 108 tags
in a few hours. We did this before the
activity models existed to minimize bias-
ing our tagging with key objects. We
tagged as many objects as possible so
that the subjects wouldn’t feel steered to
a narrow set.

Over the next six weeks, we tested the
concept by having 14 subjects (3 male,
11 female) perform ADLs, wearing the
glove in Figure 2. Each spent roughly 45
minutes in the house. Ages ranged from
25 to 63, with a mean of 39. We re-
cruited subjects by word of mouth and
paid them $20 on completion.

After we took the subjects on a tour
of the house, described the experiment,
and demonstrated the glove, we gave the
subjects 14 task sheets, one for each
ADL. The task sheets had pictures of
where the subjects could find some
objects in the house to avoid unneces-
sary searching. We kept activity descrip-
tions (see Table 1) broad and as close to
the medical description as possible.

Subjects randomly selected 12 of the
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TABLE 1
The tested activities of daily living.

ADL Task sheet description Notes

1. Personal appearance Please touch up your personal appearance.

2. Oral hygiene Please take care of your oral hygiene as if
you were about to go to bed.

3. Toileting Please use the toilet.

4. Washing Please wash up.

5. Housework Please clean something.

6. Safe use of appliances Please use an appliance.

7. Heating use Please adjust the thermostat. The thermostat was the only heating
control in the house

8. Caring for clothes and linen Please use the washer and/or dryer.

9. Preparing a simple snack Please prepare something to eat.

10. Preparing a simple drink Please make yourself a drink.

11. Telephone use Please use the telephone to get We focused the task to encourage a 
your horoscope. short call.

12. Leisure activity Please watch TV, read, play cards, or listen
to music for a few minutes.

13. Infant care Please care for the baby. We used a life-size, untagged doll.

14. Taking medication Please take some pills. We used candy instead of pills.



14 tasks. We then asked them if they
wished to withdraw or felt uncomfort-
able with what they were asked to do—
none did. They then went into the house
and performed their 12 tasks, in any
order, without observation. We waited
outside. As they touched tags, they
heard a beep when PROACT detected the
touch. Because this round of experi-
ments wasn’t meant to test the glove’s
efficacy, we asked the subjects to retouch
something if they didn’t hear a beep. This
was sometimes necessary owing to the
glove’s prototypical nature; typically,
subjects touched approximately 60 tags,
one of which they needed to repeat.
While performing tasks, the subjects
wrote on a sheet of paper which task
they were doing. After leaving the house,
the subjects gave one experimenter the
sheet. We kept this sheet separate from
the other experimenters until after we
processed the results.

The tags remained in place for six
weeks in the house, which was perma-
nently occupied and used by an extended
family (including visiting relatives).
Except for a few tags that we had awk-
wardly placed on edges, all tags stayed
usable throughout, surviving the full
destructive power of a two-year-old in
his native habitat.

Results
We gave the object-touch sequence for

each subject (without manually seg-
menting between activities), along with
models for the 14 activities, to the infer-
ence engine. The engine returned the
most likely activity sequence that would
explain the readings. Running the activ-
ity inference took much less time than
performing the activities. So, although
we used PROACT offline, it can infer these
ADLs in real time.

Although for this experiment we used
the inference engine to report the most
probable ADL at any given time, the
engine has much more detailed infor-

mation. Using a probabilistic system
such as this, and with object-based input,
we can provide a richer set of data to a
caregiver than a simple binary yes or no
for a particular ADL. We can report our
confidence in that conclusion and the
evidence behind it. The caregiver can use
this as part of his or her assessment—for
example, noting that an elder is wearing
the same clothes each day, that the elder
is taking longer and longer to make
lunch, and so forth. The more tags in the
house, the richer this information.

We compared the PROACT report with
the activity sequence that the subjects
reported immediately after the experi-
ment. We treat the latter as ground truth.
When PROACT correctly claimed an activ-
ity occurred, it scored a true positive
(TP); an incorrect claim scored a false
positive (FP). If an activity occurred and
PROACT didn’t report it, PROACT scored a
false negative (FN). Table 2 shows the
results for each ADL. We then used two
standard metrics to summarize PROACT’S
effectiveness. Precision is the probabil-
ity that a given inference about that
activity is correct: TP/(TP + FP). Recall is
the probability that PROACT will correctly

infer a given true activity: TP/(TP + FN).
The medical community calls precision
and recall positive predictive value and
sensitivity, respectively.

Discussion
PROACT correctly inferred that an ac-

tivity occurred 88 percent of the time.
For eight ADLs, there were no false pos-
itives. Of the activity instances that actu-
ally happened, PROACT detected 73 per-
cent correctly. Given the ambiguous and
overlapping activity definitions—we
didn’t help PROACT make subtle distinc-
tions between ADLs such as personal
appearance, oral hygiene, and washing
up—PROACT did well.

This is the first time a system has
inferred nine of the ADLs. For four more
(meal preparation, toileting, heating con-
trol, and medication taking), this is the first
time that researchers have reported any
quantitative results. For hand washing, the
one ADL with previous quantitative
results, PROACT’s 100 percent precision
compares well to the 95 percent that Alex
Mihailidis, Geoff Fernie, and Joseph Bar-
benel reported,6 but our 33 percent recall
is far below their 84 percent.
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TABLE 2
Experiment results.

True False False Precision Recall
ADL no. positives positives negatives (%) (%)

1 11 1 1 92 92

2 7 3 2 70 78

3 8 3 3 73 73

4 3 0 6 100 33

5 8 0 4 100 75

6* 21 4 6 84 78

7 8 0 3 100 73

8 7 0 2 100 78

9 6 2 4 75 60

10 9 5 5 64 64

11 11 0 3 100 79

12 7 0 5 100 58

13 13 0 1 100 93

14 9 0 2 100 82

Total 128 18 47 88 73

*The “safe use of an appliance” task is also an optional subtask in many other tasks—for example, using
the microwave to boil water for a drink or using the clothes dryer. We count the use of an appliance during
another task as a positive for the “safe use of an appliance” task.
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The hand-washing performance is
actually our worst case. Water and metal
absorb the radio waves that most RFID
tags use; metal can also short-circuit the
tag antenna. These factors cause the
detection rate to plummet for tags that
are too close to those substances. This
especially affected the tags on the
faucets, soap bottle, and refrigerator
handle. This directly affected washing
hands (ADL 4), making a snack (9), or
preparing a drink (10). More careful tag
positioning, and using newer RF tags
that are optimized for placement near
liquids and metal, could mitigate this.

Sometimes, the model involves so few
observations as to not be easily distin-

guishable from noise. For example, the
only observable for adjusting heat (ADL
7) was the act of touching the thermo-
stat; the only observable for playing
music (11) was the act of touching the
stereo. Often, a single observation of a
tag provided insufficient evidence for the
inference engine to confidently conclude
that a new task had begun. Adding more
relevant tags could solve this (for exam-
ple, tagging the CDs).

Activities with starting points posed a
more subtle problem. For instance, activ-
ities for personal appearance (ADL 1),
oral hygiene (2), toileting (3), and wash-
ing (4) all begin with entering the bath-
room and possibly turning on the light.

Our models replicate the nodes for these
subactivities for each of the four activi-
ties. When PROACT detects someone en-
tering the bathroom and turning on the
light, each of these four activities is
equally likely. When the system detects
disambiguating objects (such as a tooth-
brush and toothpaste), the inference
engine concludes that oral hygiene is the
correct activity. If the user then uses the
toilet without leaving the bathroom first,
the inference engine fails to detect the
second activity. To solve this problem,
we might need to consider more nuanced
representations of activities.

PROACT can learn parameters without
supervision (in particular, duration of
subactivities), similarly to the research
of Donald Patterson and his colleagues.3

However, our experiments didn’t include
any model learning. We used a fixed
small number (20 seconds) for mean
duration, which was sometimes inap-
propriate. A particularly insidious effect
surfaced when subjects interleaved boil-
ing water for tea or coffee (ADL 10) with
other activities. Because boiling takes
several minutes, PROACT would conclude
that they were no longer boiling water
after some seconds (yielding false nega-
tives) and erroneously jump to other
activities for the post-boiling events
(yielding false positives). We can achieve
much better tuning of the time parame-
ter by using unlabelled training data.

P
ROACT’s emphasis on user inter-
actions with objects potentially
offers a powerful way to infer
ADLs. As our results show, the

early results are promising.
For future work in the quantitative

domain, a top priority is to perform a
true longitudinal study with actual elders
as soon as the sensing technology per-
mits. In the sensor domain, we want to
move beyond the sensor glove and inte-
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grate other types of sensors, particularly
location sensors. In data mining, we’re
investigating how to mine better mod-
els, integrate the time of day into activ-
ity probabilities, and suggest the key
objects to be tagged for a given activity
set. Key challenges in activity inference
include modeling interleaved activities,
multiperson activities, and more com-
plicated temporal models. Finally, we
want to demonstrate PROACT’s breadth
by applying it to a non-ADL domain.
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