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ABSTRACT 
Emerging HCI techniques require the ability to recognize 
activities that occur in the physical world. Systems that 
recognize home activities have been limited in the variety 
of activities they recognize, their robustness to noise, and 
their ease of use. We present a toolkit (PROACT) for 
activity recognition that addresses these problems by 
leveraging three novel techniques: automatically mining 
text documents and the web for activity structure; 
recognizing object use via Radio Frequency Identification 
(RFID) technology; and combining these two inputs to 
infer user behavior with a flexible and scalable, Monte-
Carlo based inference engine. As an initial evaluation, we 
successfully applied our system to a known difficult 
problem from health care: recognizing multiple “Activities 
of Daily Living” (ADLs) in a real home environment. 
Promising results from a user study validate PROACT’s 
approach. 

Keywords 
Ubiquitous, proactive or context aware computing, RFID, 
activity inference, data mining, machine learning, ADLs 

ACM Classification Keywords 
H5.m. Information interfaces and presentation (e.g., HCI): 
Miscellaneous.  J.3 Life and Medical Sciences: health 
 

INTRODUCTION 
Many HCI researchers are pursuing visions of “invisible”, 
“disappearing”, “proactive”, or “polite” human-computer 
interaction [cf. 5, 10, 12, 26]. In this paradigm, computers 
observe the behavior of users and their environments via 
networks of sensors, and perform designated tasks on 
behalf of the user, ideally with little explicit user direction.  
At the core of these systems is a module that uses sensor 
data to infer aspects of the users’ current context. An 
important part of context is the activities currently being 
performed by the users, and the amount of progress that 
they have made toward completion. For example, it is 
reasonable to believe that a context-based reminder 
program would be more effective in reminding people to 
balance their checkbooks if it did so while they were 

paying bills rather than when they passed through the study 
to answer a phone call. 
Engineering such modules to recognize human activity, 
particularly in the home, is a challenge. Most applications 
approximate activity recognition with proxies such as room 
location and identity [3, 7, 8]. Systems that do finer-grained 
recognition are rare, and typically limited to a specific 
activity. They are painstakingly engineered using custom 
sensors, heuristic reasoning engines and rooms-of-the-
future [2, 15, 16, 27].  We present here a probabilistic 
activity toolkit, PROACT, that can recognize routine 
activities in structurally un-modified rooms with reasonable 
accuracy.  PROACT requires one simple, robust, easy to 
deploy sensor. We believe that this toolkit can be useful in 
making context-aware applications more intelligent, and 
we demonstrate this via a preliminary evaluation. 
For our evaluation, we applied PROACT to the problem of 
reporting 14 Activities of Daily Living (ADLs) [13, 14], a 
standard metric used to measure the cognitive wellness of 
people requiring assisted care. ADLs are a particularly 
interesting domain of application because the activities to 
be monitored are standardized, matched to a real-world 
need, and known to be tedious and error-prone to monitor. 
Accordingly, automatic ADL inference has been 
intensively investigated [2,3,7,8,15,16,21,27,28] with 
limited success.  We instrumented a real home and tested 
our system in that home over a 6 week period with 14 non-
researcher users. 
The early results are promising. We show that nine ADLs, 
which no known prior work has addressed, were accurately 
inferred by PROACT. For four more ADLs, we were able 
for the first time to move beyond qualitative presentation to 
quantitative analysis.  
At the heart of PROACT is a breakthrough in sensing 
technology. Recent advances in miniaturization and 
manufacturing have dramatically improved the 
functionality and reduced the cost of transceivers, called 
Radio Frequency Identification (RFID) tags, which can be 
attached unobtrusively onto individual objects as small as a 
plastic fork. These tags are the size of a postage-stamp, 
require no batteries and are inexpensive.  When 
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interrogated by a radio they respond with a globally unique 
identifier.  Combined with PROACT’s tag readers, this 
technology reliably identifies objects that are touched, 
moved, or co-located by a person.  
The ability to detect a large number of objects relevant to 
an activity has novel implications for activity definition and 
detection. In particular, we define an activity in terms of 
the probability and sequence of specific object involvement 
(touching, movement, co-location). “Paying Bills”, for 
instance, may involve bills, folders, calculators, check 
books, pens and computers. The structure of our models 
allows us to define new activities only by converting text 
definitions of activities (structured as “recipes” or how-
to’s) with lightweight English text-processing.  In fact, we 
have mined the web for roughly 20,000 activity models so 
far. Finally, since many activities are quite strongly 
characterized by the objects involved, simple models 
suffice. By avoiding intricate causal structure for activities 
while associating as many relevant objects as possible, our 
models are both fast and precise. 
In what follows, we first describe how PROACT is 
intended to be used and explain its design. Next, we 
describe our evaluation, including further details on the 
application domain (ADLs), the experiment, and the 
results. Finally, we discuss related work before concluding 
and presenting future work. 

USAGE MODEL 
PROACT assumes that “interesting” objects in the 
environment contain RFID tags. These can be purchased 
off the shelf, cost roughly $0.40 each, have the form factor 
of postage stamps (including adhesive backing), and can 
withstand day-to-day use for years. PROACT deployment 
involves tagging tens to hundreds of objects in their 
environment. This can be done incrementally; the more 
tags, the broader and deeper the inferencing. Tagging an 
object involves sticking an RFID tag on it, and making a 
database entry mapping the tag ID to a name.  Despite this 
apparent overhead, market forces will soon automate this 
infrastructure creation [1]. 
Users then employ RFID tag readers to monitor their 
activities. They may wear tag-detecting bracelets or gloves, 
place long-range (roughly 20ft) readers in corners of 
rooms, or run robots, vacuum cleaners, or janitorial carts, 
with mounted long-range readers. As users go about their 
daily activities, the readers detect tags that (a) users touch, 
(b) are close to them, or (c) are moved by them, and 
thereby indirectly deduce which objects are currently 
“involved” in their activity. PROACT uses the sequence 
and timing of object involvement to deduce what activity is 
happening.  
PROACT is intended to run in real time. An application 
can query it at any time for the likelihood of various 
activities being tracked or details of those activities (e.g., 
objects involved, or durations), or subscribe for event 

notification when activities occur with a specified degree of 
certainty.  
Programmers name activities using plain English phrases 
(e.g. “paying bills”). The phrase used can either be chosen 
from a list provided by PROACT, or can be a new one 
provided by the programmer. For a new phrase, the 
programmer can define the activity by providing a text 
document containing an English description of the steps 
involved in the activity (much like a recipe), or request that 
PROACT mine the definition automatically from the web. 
In either case the mining engine converts text into activity 
definitions. 

SYSTEM OVERVIEW 
 

 
Figure 1 presents the main components of PROACT. It is 
centered on an inference engine which, given models for 
activities, and sequences of sensor readings, returns the 
likelihood of current activities. The models are produced 
by the mining engine, which extracts them automatically 
from text documents, including but not limited to websites.  
The sensor readings are produced while the end-user 
performs activities. For debugging, PROACT provides an 
activity viewer, which provides programmers with a real-
time view of activities in progress, the sensor data seen, 
and how belief in each activity changes with the data.   

Activity Model Design 

 
PROACT’s activity model is restricted to linear sequences 
of sub-activities which are annotated with timing and 
object information. Figure 2 gives an example of how to 
model the activity “making tea.” The activity consists of 
three consecutive sub-activities, drawn as circles 
(corresponding to ()A)boiling water, (B)steeping, and 
(C)flavoring the tea).  
PROACT allows each sub-activity to have its time-to-
completion be modeled as a Gaussian probability 
distribution.  In this example, steeping the tea is expected 

Inference Engine 

modelsMining Engine Viewe

sensor readings 

web / text documents  

physical activities  

Sensor

Figure 1: A High-Level View of PROACT 

kettle stove faucet cup teabag milk sugar

0.7 0.8 0.6 0.9 0.6 0.5 0.4

tµ = 2 min  

Figure 2: PROACT Model for Making Tea 
water 

0.6 

A B C

activities with likelihoods, 
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to take 2 minutes.  The amount of time required to boil the 
water and flavor the tea is unknown, and does not influence 
the reasoning.  
The final part of the representation is a dotted arrow 
denoting the probability that an object is involved in an 
activity.  In Figure 2, for instance, we expect to see a kettle 
70% of the time that we are boiling water, whereas sugar is 
involved in the mixing phase 40% of the time. This 
probability combines three sources of ambiguity: sensor 
error, model error, and modeling generality (e.g., water 
may be in the kettle, and as a result the faucet may not be 
touched). 

Mining Activity Models from Text Definitions 
 
Since we expect that it will be difficult for lay 
programmers to directly model activities in this fashion, 
PROACT allows activities to be specified as text 
documents that are structurally very similar to recipes. 

 
Figure 3 provides an example. Each document has a title, 
an optional list of objects involved, and a step-by-step 
description of how to perform the activity. The mining 
engine then converts the document into an activity model 
by interpreting the steps as sub-activities and the objects 
mentioned in each step as the set of objects involved.  
When available, timing information is taken from the 
description. 
PROACT does not require full natural-language 
processing: light-weight syntactic analysis suffices to 
identify the steps. To identify the objects mentioned in each 
step (highlighted in bold in the figure), we use WordNet 
[28], a package which maps words to their potential uses.  
Our activity description requirements are simple enough 
that by adding a custom HTML parser, we are able to 
 successfully mine recipe and how-to sites. PROACT 
comes with roughly 20,000 predefined activity definitions 
including “cleaning a bathtub” and “boiling pasta”. 
PROACT determines the object involvement probabilities 
p in a novel manner. The method relies on a “Mirror 
Assumption”: if an activity name an co-occurs with some 
object name on in human discourse, then activity a is likely 
to involve object o in the physical world. We postulated on 
this basis that if an occurs on n1 pages on the web (which 
we treat as a compendium of human discourse), and there 
are n2 pages containing both an and on, then Pr(o|a) ≈ n2/ n1.  
We obtain these numbers via the Google programming 
API. There are clearly instances when this assumption 

fails; however, our experience has been that it is sufficient 
to generate an initial set of probabilities: they were used, 
unchanged, in our experiment. 

Sensing objects of interest via RFID 

 
Activity inference depends on being able to observe objects 
that are “involved” in activities. PROACT currently uses 
RFID readers in two ways to determine two types of 
involvement. First, it uses long-range readers mounted on a 
mobile robot platform to map the location of objects in the 
activity space, and coupled with the location of the user, 
the set of objects near a person at any given time. Second, 
it uses a short-range reader built into the palm of a glove 
that can determine the objects that are touched. Both 
readers are built from commercial off-the-shelf equipment. 
The antenna built into the palm of the prototype glove is 
connected to an Intermec RFID reader, which is packaged 
with a Crossbow Mica Mote radio, a USB-based power 
supply, and a rechargeable battery. All components except 
the antenna are housed in the small box on the glove of 
Figure 4. The reader samples the environment once every 
half second; any RFID seen is broadcast to an HP iPaq 
5400, utilized as a wearable computer.  The iPaq either 
stores the data onboard for future analysis or forwards it 
via WiFi to the inference engine running on a workstation. 
The reader lasts for two hours at this duty cycle. PROACT 
presently supports two mobile RFID readers – one robot-
based, and one glove-based, as shown in Figure 4. For this 
experiment, we used the glove.  
While it would be problematic for many applications to use 
such a glove, this is a temporary problem. When a portable 
RFID glove as a UI device was proposed 3 years ago [25], 
it measured roughly 160 cm3, and was not wireless. Our 
latest version is a little over 30 cm3, including wireless. 
Within a few years portable RFID readers can fit into a 
large wristwatch or bracelet, and can detect RFID tags near 
the palm of the hand. 
The RFID-reading robot, which has two RFID-reading 
antennas and a laser scanner onboard, has to overcome two 
challenges. It has to localize itself relative to the space it 
scans, and it needs to localize tags relative to itself. 
Combining the two allows it to provide absolute locations 
for the tags. We use a laser scanner to achieve the former, 
using recent advances in Simultaneous Localization and 
Mapping [20] from robotics to combine scanner readings 

Figure 3: Steps for Making Tea 

Making Tea: 

1. Fill a kettle from the faucet. Place kettle on the stove and 
boil. 

2. Pour hot water into a cup, filling ¾ of the cup. Immerse 
teabag in cup for two minutes and dispose of teabag.  

3. Add milk and sugar to taste. 

Figure 4: RFID Readers: Robot (L) and Glove(R) 
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that build a map and localize a robot, even in completely 
new spaces. Using statistical techniques, we can take the 3 
to 6m detection ranges and localize tags to within 1m.  

Activity Inference 
By regarding the current sub-activity as a hidden variable, 
and objects seen and time elapsed as observed variables, 
the problem of probabilistically estimating the hidden 
variables given observables is handled by the general 
technique of Bayes Filtering.  Our activity inference engine 
converts the activity models produced by the mining engine 
into Dynamic Bayesian Networks. We use a type of 
Sequential Monte Carlo (SMC) approximation called 
“particle filters” to probabilistically solve for the most 
likely activities [6].  Our work is adapted from related work 
on transportation behavior inference [23].  Intuitively, 
activity inference may be understood as follows. Initially, 
the inference engine picks a large number of “particles” 
and distributes them uniformly over all the sub-activities. 
At any given time during the inference, the probability that 
the system is in a particular sub-activity is equal to the 
fraction of particles in that sub-activity. Each time the 
system sees an observation (including clock ticks), the 
number of particles in sub-activities which are supported 
by the observation is increased, and the number in other 
sub-activities is correspondingly decreased.  In this way, all 
activities are reasoned about in parallel. 

EVALUATION 
The primary goal of our evaluation was to test whether 
PROACT could infer the correct activities from a useful set 
performed by people in a realistic setting. Below, we first 
discuss the activity domain for the experiment, and then 
provide details on the experiment and its results. 

The Domain: Activities of Daily Living (ADLs) 
We evaluated PROACT with a known difficult set of 
problems in activity inferencing: inferring daily activities in 
the home. The health care community refers to two sets of 
daily activities; those which involve interactions with 
“instruments” (telephones, appliances, etc.), termed 
Instrumental Activities of Daily Living (IADLs) [14], and 
those which do not (“ADLs”) [13]. We follow standard 
practice and use “ADL” generally to refer to both sets. 
ADLs have become a standard set of activities to infer for 
two reasons: 
First, ADL monitoring is an ongoing, important activity in 
health care. For example, in the United States, any nursing 
home that receives Medicare funds has to record and report 
ADLs. Trained caregivers spend a great deal of time 
measuring and tracking ADL accomplishment for persons 
under their care. However, this monitoring is difficult. It is 
time-consuming, prone to forgetting (both forgetting that 
an ADL was observed and forgetting to record it), and 
invasive. Automated aids that can address these issues and 
augment caregiver work practice are of great interest. We 
stress that PROACT is not designed to replace a caregiver, 
but rather to augment and ease their work practice. Robust 

and potentially unseen RFID tags are particularly well-
suited for ADL monitoring of people with early-stage 
dementia (an increasingly common and problematic target 
population), as they are prone to break and disassemble 
fragile and/or unusual objects. 
Second, ADLs are general and challenging because they 
are common activities that people engage in daily. These 
activities are useful to infer in the home setting as well, but 
this is particularly challenging because the home is a 
private, difficult to instrument, and fluid setting.  
Of the more than 20 ADLs that caregivers can monitor, we 
chose 14 for evaluation. We eliminated the rest due to the 
structure of our experiment, where subjects performed the 
tasks in another person’s home, so ADLs such as “bathing” 
could not feasibly be tested. Others were omitted because 
they required travel outside the home (e.g. “shopping”, 
“crossing the street”). We stress that it was the focused 
nature of the experiment, not any limitation of the toolkit, 
which led to this exclusion. The 14 ADLs we tested (shown 
in Column 2 of Table 1) are, to our knowledge, 11 more 
than any other system has attempted. 

No. ADL Task Sheet Description 
1 Personal 

Appearance 
Please touch up your 
personal appearance. 

2 Oral Hygiene Please take care of your oral 
hygiene as if you are about to 
go to bed. 

3 Toileting Please use the toilet. 
4 Washing Please wash up. 
5 Housework Please clean something. 
6 Safe use of 

Appliances 
Please use an appliance. 

7 Use of heating 1Please adjust the thermostat. 

8 Care of clothes and 
linen 

Please use the washer and/or 
dryer. 

9 Preparing simple 
snack 

Please prepare something to 
eat. 

10 Preparing simple 
drink 

Please make yourself a drink. 

11 Use of telephone 2Please use the Telephone to 
get your horoscope. 

12 Leisure Activity Please watch TV, read, play 
cards, or listen to music for a 
few minutes. 

13 Caring for an 
infant 

3Please care for the baby. 

14 Taking Medication 4Please take some pills. 

Table 1: tested ADLs, and their descriptions 

Notes:  
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1 “Use of heating”:  the thermostat was the only heating control in the 
house.  
2 “Use of telephone”: we focused the task to encourage a short call. 
3 “Caring for an infant”: a life-size doll was used, but not tagged. 

4 “Taking Medication”: the pills were replaced with candy.  

Experiment 
 

Experimental Procedure 
 
We felt it vital to use a real house, with real objects, in real 
locations, used by real people and subject to the real wear 
and clutter of daily living. In a perfect world, we would 
have instrumented the houses of each of our subjects, but 
this was impractical. Instead, we chose one inhabited house 
(inhabited by one of the authors, his wife, and their 2-year-
old child) and instrumented it with 108 tags in a few hours. 
This approach has disadvantages. Subjects weren’t in their 
own homes, and we could not do longitudinal study. 
However, we feel this was a valid compromise. Multiple 
subjects volunteered to us that since they were not 
observed and were in a real house, they felt relaxed and at 
ease, and that they acted naturally. 
 Figure 5 shows the kitchen area with some tags circled. 
We did this before the activity models existed, so as to not 
be biased by its later designation of “key” objects. By 
tagging as many objects as possible, we also hoped to 
avoid having subjects feel they were “steered” to a narrow 
set of objects. 

 
Over the next 6 weeks, we had 14 subjects (3 M, 11 F) 
perform their activities, unobserved, in this house, wearing 
the glove of Figure 4. Each spent roughly 45 minutes in the 
house. Ages ranged from 25 to 63, with a mean of 39. 
After a tour of the house, and a demonstration of the RFID 
glove, subjects were informed of the nature of the 
experiment. Subjects were given a package of 14 task 
sheets, one for each ADL. Table 1 shows the tasks as 
described on each sheet. The task sheets also had pictures 
of where some objects could be found in the house to avoid 
“treasure hunts”. As Table 1 shows, we kept activity 

descriptions as broad and as close to the medical 
description as possible. 
Subjects randomly selected 12 of the 14 tasks. They then 
went into the house, and performed those 12 tasks, in any 
order, without observation. Subjects could engage in other 
household activities as they wished. As they touched tags 
in the course of performing their tasks, they would hear a 
“beep”, as PROACT indicated that it had recorded a tag 
touch. Since this round of experiments was not meant to 
test the efficacy of the glove itself, subjects were asked to 
touch something several times if they saw that they were 
touching a tagged object and didn’t hear a “beep”. This was 
sometimes necessary due to the prototypical nature of the 
glove; typically, subjects touched around 60 sixty tags, one 
of which needed to be repeated.  While performing tasks, 
subjects wrote on a sheet of paper which task they were 
doing. After leaving the house, subjects gave one 
experimenter the sheet. This was kept separate from the 
other experimenters until after the results were processed. 
Subjects were paid $20. 
As an additional test of the robustness of the system, the 
tags were left in the house while subjects were not present. 
In total, the tags were in place for 6 weeks in the house, 
which was permanently occupied and used by an extended 
family (the house was also frequently lived in by visiting 
relatives). With the exception of a few tags that were 
awkwardly placed on edges all tags stayed usable 
throughout the entire experiment, surviving the full 
destructive power of a 2-year-old in his native habitat. 

Results 
We gave the complete tag sequence for each subject 
(without manually segmenting between activities), along 
with models for the 14 activities to the inference engine. 
The engine returned a log of the most likely sequence of 
activities that would explain the readings. Running the 
activity inference took less time than performing them. 
Thus, although we used PROACT offline, it is capable of 
inferring these ADLs in real time. 
Recall that PROACT goes beyond a simple 1-bit 
notification that an activity occurred, and can provide much 
more detail. For example, for the “preparing a simple 
snack” task, PROACT can report how long it took to make 
the snack, which ingredients were used, which utensils 
were employed, etc. By monitoring these details (are they 
taking longer to make their meals? Are they wearing the 
same clothes each day?) , caregivers can get a richer, 
nuanced view of condition. However, it is difficult to 
quantify this additional information, so for the analysis 
below we restrict ourselves to activity-reporting as simple 
binaries.  
We compared the logs generated by PROACT with the 
activity sequence reported by the subjects immediately 
after the experiment. We treat the latter as ground truth. 
Each time the logs claimed an activity occurred, if it was 
correct that was a true positive (TP), if it wasn’t it was a 

Figure 5: Kitchen of Experiment Home 
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false positive (FP). If a true activity occurred and wasn’t 
reported by PROACT, it was scored as a false negative 
(FN). Column 2 of Table 2 shows these numbers.  
 

ADL No. TP FP FN Prec % Rec % 
1 11 1 1 92 92 

2 7 3 2 70 78 

3 8 3 3 73 73 

4 3 0 6 100 33 

5 8 0 4 100 75 

61 21 4 6 84 78 

7 8 0 3 100 73 

8 7 0 2 100 78 

9 6 2 4 75 60 

10 9 5 5 64 64 

11 11 0 3 100 79 

12 7 0 5 100 58 

13 13 0 1 100 93 

14 9 0 2 100 82 

TOTAL 128 18 47 88 73 

 

Table 2: Results of Experiment 

 
We then use the standard metrics of precision and recall to 
summarize the effectiveness of PROACT. Precision for an 
activity is the probability that a given inference about that 
activity is correct; TP/(TP+FP). Recall is the probability 
that a given true activity will be inferred correctly; 
TP/(TP+FN). Precision and recall are termed “positive 
predictive value” and “sensitivity”, respectively, in the 
medical community. 

Discussion 
As Table 2 shows, PROACT did well on average: when it 
inferred an activity, it was correct 88% of the time. For 
many activities, it never incorrectly inferred occurrence of 
the activities. Of the activity instances that actually 
happened, it detected 73% correctly. Given the ambiguous 
and overlapping activity definitions (consider “personal 
appearance”, “oral hygiene”, and “washing up” – we did 

                                                           
1 The “Use of an appliance” task is also an optional sub-

task in many others: using the microwave to boil water 
for a drink, using the dryer to care for clothes, etc. We 
count use of an appliance during another task as a 
“positive” for the “use an appliance” task. 

nothing to help PROACT make these subtle distinctions) 
PROACT did quite well.  
To place these numbers in further context, note that while 
ADL inferencing has often been investigated, 9 of the 
ADLs inferred here are inferred for the first time. For 4 
more (meal preparation, toileting, heating control, and 
medication taking), this is the first time that any 
quantitative results are reported. For the one ADL where 
previous quantitative results were presented, hand washing, 
PROACT’s precision/recall of 100/33% are below the 
95%/84% reported by Mihailidis [16], however that work 
targets exactly one activity and requires cameras to be 
installed in the bathroom. 
The performance on hand-washing is actually our worst 
case. We now discuss the reasons for this result, and a few 
others of interest. The radio waves used by most RFID tags 
are absorbed by water and metal; metal can also short-out 
the tag antenna. These factors cause the detection rate to 
plummet for tags which are too close to those substances. 
The tags on faucets, soap bottle and refrigerator handle 
were especially affected by this. Activities where touching 
faucet and soap or the refrigerator were key, namely 
washing hands (activity 4), making a snack (9) or drink 
(10) were directly affected by this. More careful tag 
positioning, and/or using newer RF tags which are 
optimized for placement near liquids and metal, could 
mitigate this. 
In some cases, the model involves so few observations as 
to not be easily distinguishable from noise. For example, 
the only observable for adjusting heat (7) was touching the 
thermostat; that for playing music (11) was the stereo (CDs 
were not tagged). The single observation that results is not 
enough to convince the activity inference engine that a new 
task has begun. Adding more relevant tags could solve this 
(e.g. tagging the CDs). 
Activities with common prefixes posed a more subtle 
problem. For instance, activities for personal appearance 
(activity 1), oral hygiene (2), toileting (3) and washing (4) 
all begin with entering the bathroom and possibly turning 
on the light. Our models replicate the nodes for these sub-
activities for each of the four activities. When bathroom 
and light are detected, each of these activities are equally 
likely (nominally 25%). When disambiguating objects are 
then seen (e.g. toothbrush and toothpaste), the inference 
engine concludes that the oral hygiene activity is the 
correct one.  If the user then uses the toilet without leaving 
the bathroom first, the inference engine fails to detect the 
second activity. To solve this problem, it may be necessary 
to consider more nuanced representations of activities. 
Although it is possible for PROACT to learn parameters 
without supervision (in particular, duration of sub-
activities) in the style of [23] our experiments did not 
include any model learning. We used a fixed small number 
(20 sec) for mean duration, which was sometimes 
inappropriate. A particularly insidious effect surfaced when 
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subjects interleaved boiling water for tea or coffee (10) 
with other activities. Since boiling takes several minutes, 
PROACT would conclude that they were no longer boiling 
water after a few seconds (yielding false negatives), and 
erroneously “jump” to other activities for the post-boiling 
events (yielding false positives). We can most likely 
achieve much better tuning of the time parameter via use of 
unlabelled training data, but more sophistication will be 
required of our inference engine to detect interleaved 
activities.  

RELATED WORK 
Sensor streams feeding Bayesian networks for activity 
inferencing have been employed with great success to 
analyze the behavior of office workers [9, 10, 22] and cell-
phone users [16]. However, the qualitatively different 
nature of the task domain and setting and the sensors 
available (keyboards, mice, cameras, microphones, cell-
phones, etc.) has not yet allowed these techniques to be 
employed in the sensor-impoverished, unstructured home 
environment inhabited by ADLs. 
Our activity inference engine builds primarily on work on 
robot GPS location tracking with noisy sensor data. [17, 
23].  It is related to work on care-giving with robotic 
nurses, but does not require manual input of activity 
completion and can re-estimate model parameters in an 
unsupervised manner [4,18,24]. 
Many researchers have investigated ADL inferencing. 
These investigations fall into two categories: investigations 
into general solutions for multiple ADLs, and 
investigations into solutions for single ADLs. 
Single-ADL investigations have focused on hand washing 
[16], medication-taking [28], meal preparation [2, 27], 
general activity level [15], and use of heating [21]. Due to 
the low-level information provided by the sensors they 
employ, and the lack of leverage between investigations 
due to their idiosyncratic sensor and algorithm suites, only 
one ([16]) reports the quantitative results of user testing. 
Multiple-ADL inferencing has used a variety of low-level 
sensors (mainly motion and contact) to infer general 
activity level, and used motion in a room to roughly 
estimate kitchen and bathroom activity [7, 8, 3]. One [7] 
reports anecdotal “reasonable assurance” that their 
inferences work when tested on a single user, but 
regretfully the inferencing is quite coarse, reporting mainly 
room-level motion.  
The multiple-ADL approach most similar to ours is the 
current work of Intille et al. [11]. They also use adhesive 
sensors which are placed throughout the home. Sensor 
readings are then later analyzed for a variety of 
applications – kitchen design, context inferencing, and 
eventually ADL monitoring. They share our contention that 
robust, easily deployed, cheap sensors measuring real 
activity in real homes are vital for true user interaction and 
understanding. Our work differs from theirs in four ways – 

infrastructure, approach, analysis, and experience. For 
infrastructure, we use commercially available RFID tags, 
whereas they employ custom-made sensors. RFID tags are 
roughly 100 times cheaper, more easily deployable, less 
physically obtrusive (they can even be unseen), and more 
physically robust. From an approach point of view, their 
sensors passively collect data which is then analyzed weeks 
or months later, after the sensors are removed, while our 
system is designed to support immediate analysis, with the 
sensors remaining in situ. From an analysis point of view, 
their work is in its early stages, and is focused on how to 
best collect and integrate the data, with analysis only 
beginning. We report a functioning general framework 
which performs this analysis. Finally, from an experience 
point of view, we are reporting for the first time an 
experiment to test and validate such analysis. 

CONCLUSION 
We believe that PROACTs combination of recent advances 
in three areas (RFID, data mining, and machine learning) 
offers great promise for future work in activity inferencing. 
As shown here, we have successfully employed it to a 
known problem (ADL monitoring) and achieved good first 
results in detecting many activities. 
There are many opportunities for future work, in each of 
these three areas. In the sensor domain, we would like to 
move beyond the glove, and to integrate other types of 
sensors, particularly location sensors. In data mining, we 
are investigating how to mine better models, and to suggest 
“eigenobjects” to be tagged for a given activity set. Key 
challenges in activity inference include modeling 
interleaved activities, and those involving many people. 
Finally, we would like to demonstrate the breadth of 
PROACT by applying it to a non-ADL domain. 
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