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Abstract—Automatic classification of everyday activities can be
used for promotion of health-enhancing physical activities and
a healthier lifestyle. In this paper, methods used for classifica-
tion of everyday activities like walking, running, and cycling are
described. The aim of the study was to find out how to recog-
nize activities, which sensors are useful and what kind of sig-
nal processing and classification is required. A large and real-
istic data library of sensor data was collected. Sixteen test per-
sons took part in the data collection, resulting in approximately
31 h of annotated, 35-channel data recorded in an everyday en-
vironment. The test persons carried a set of wearable sensors
while performing several activities during the 2-h measurement
session. Classification results of three classifiers are shown: cus-
tom decision tree, automatically generated decision tree, and ar-
tificial neural network. The classification accuracies using leave-
one-subject-out cross validation range from 58 to 97% for cus-
tom decision tree classifier, from 56 to 97% for automatically
generated decision tree, and from 22 to 96% for artificial neural
network. Total classification accuracy is 82% for custom decision
tree classifier, 86% for automatically generated decision tree, and
82% for artificial neural network.

Index Terms—Activity classification, context awareness, physi-
cal activity, wearable sensors.

I. INTRODUCTION

PHYSICAL inactivity is a health risk that many people in
both developed and developing countries are facing to-

day. According to World Health Organization (WHO), at least
60% of the world’s population fails to achieve the minimum
recommendation of 30 min moderate intensity physical activ-
ity daily [13]. The main reason for not achieving this basic
level of physical activity is that the level of activity required
in work, in travel, and at home is decreasing with sedentary
work and with the advent of technologies that are designed to
ease home activities and traveling. The physical activities on
free time are insufficient or too irregular to achieve the weekly
goal. Physical inactivity is known to contribute in many chronic
diseases, such as cardiovascular disease, type 2 diabetes, and
possibly certain types of cancer and osteoporosis [2], [3]. As
the population is rapidly aging in many countries, promotion of
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a healthier lifestyle, especially for the elderly population, can
provide substantial savings in future health care costs.

By following the minimum recommendation, many health
benefits can be obtained, when compared with completely
inactive people [4]–[6]. The basic level of physical activity
helps, for example, in managing weight, in lowering blood
pressure, in increasing the level of the good high-density
lipoprotein (HDL) cholesterol, in improving sugar tolerance,
and in changing hormone levels to a direction more suitable for
preventing cancer [3], [7]. The basic level of physical activity
can be achieved by everyday activities like walking at work,
shopping, gardening, cleaning, etc. The 30-min daily physical
activity targets to at least 1000 kcal energy expenditure weekly.
The only limitation in achieving the goal is that the daily 30-min
physical activity must be collected in continuous periods of a
minimum 10 min.

Level of daily physical activity can be measured objectively
by measuring energy expenditure. The accelerometer signal
has been used previously to estimate energy expenditure,
and the estimate has been shown to correlate well with true
energy expenditure [8]. Although achieving the minimum
recommendation of physical activity brings many health
benefits, even more health benefits can be achieved by taking
part in a more vigorous [5] and a wider spectrum of physical
activities. For example, endurance-enhancing activities and
activities maintaining flexibility and muscular strength bring
health benefits that are not achieved with basic activity [3].
Endurance can be enhanced, e.g., with energetic walking,
jogging, cycling, and rowing. Activities maintaining functions
of the musculoskeletal system are, e.g., ball games, gym, and
dancing. Thus, in addition to daily energy expenditure, activity
types play an important role in overall well being and health.

Accelerometers have been shown to be adequate for activ-
ity recognition. The studies using accelerometry for monitoring
human movement have been recently reviewed in [9] and [10].
In laboratory settings, the most prevalent everyday activities
(sitting, standing, walking, and lying) have been successfully
recognized with accelerometers [11]–[15]. However, applica-
bility of these results to out-of-lab monitoring is unclear. For
example, in [15] the recognition accuracy of nine patterns de-
creased from 95.8% to 66.7% as the recordings were shifted
outside the laboratory. Also, recognition of different activities
involving dynamic motion has not yet been studied thoroughly.
In a few studies data have been collected outside the laboratory.
In [15] 24 subjects spent approximately 50 min outside labo-
ratory. Accelerometers were placed on sternum, wrist, thigh,
and lower leg. Nine patterns (sitting, standing, lying, sitting and
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talking, sitting and operating PC, walking, stairs up, stairs down,
and cycling) were recognized from presegmented data with an
overall accuracy of 66.7%. In [16] five biaxial accelerometers
attached to hip, wrist, arm, ankle, and thigh were used to rec-
ognize 20 everyday activities such as walking, watching TV,
brushing teeth, vacuuming, etc. From 82 to 160 min of data
were collected from 20 subjects and a decision tree classifier
was used for classification. Recognition accuracies ranged from
41 to 97% for different activities.

Many research groups have recently studied activity recog-
nition as part of context awareness research [16]–[22]. Context
sensing and use of context information is an important part of
the ubiquitous computing scenario [23]–[25]. Context sensing
aims at giving a computing device (e.g., cellular phone, wrist-
top computer, or a device integrated into clothes) senses, with
which it becomes aware of its surroundings. With the senses
the device is capable of measuring its user and environment and
it becomes context aware. The context describes the situation
or status of the user or device. Different devices can use the
context information in different ways, e.g., for adapting its user
interface, for offering relevant services and information, for an-
notating digital diary (e.g., energy expenditure), etc. Location
and time belong to the group of the most important contexts and
the use of these contexts has been studied extensively. However,
to recognize the physical activities of a person, a sensor-based
approach is needed.

Our vision in automatic classification of physical activities
is to contribute to long-term monitoring of health and to a
more active lifestyle. The application we have in mind can
be called an “activity diary”. The diary would show the user
which activities he did during the day and what were the
daily cumulative durations of each activity. When the user
is shown this information, he can draw the conclusions him-
self and adjust his behavior accordingly. This model is called
the behavioral feedback model [26]. This model is being suc-
cessfully used, e.g., in weight management programs. On the
other hand the activity diary information can be utilized by
context-aware services and devices that offer adapted infor-
mation or adapt their user interface (UI) based on the user’s
activity type.

In this work our aim was to study activity classification,
which are the most information-rich sensors and what kind
of signal processing and classification methods should be
used for activity classification. We took a data-oriented and
empirical approach and collected a large data library of
realistic data. In this paper, we describe methods for automatic
activity classification from data collected with body-worn
sensors.

II. METHODS

A. Data Collection

The goal of our data collection was to assess the feasibil-
ity and accuracy of context recognition based on realistic data.
We collected a large data library of realistic context data with
many different sensors (accelerometers, physiological sensors,

etc.) and with many test persons. The collected data were then
used in development of context recognition algorithms. A data
collection system was developed for sensing and storing context-
related data in real-life conditions. Only the sensors are small
in size that were applicable to ambulatory measurements were
used. The data were stored on a rugged, compact PC (Databrick
III, Datalux Corporation, Winchester, VA, USA) and on a flash-
card-memory-based, 19-channel recorder (Embla A10, Med-
care, Reykjavik, Iceland). Additionally, two stand-alone de-
vices were used: Global Positioning System (GPS) recorder
(Garmin eTrex Venture, Garmin Ltd., Olathe, Kansas, USA) and
wrist-top computer that measured heart rate and altitude (Su-
unto X6HR, Suunto Oy, Vantaa, Finland). The PC and recorder
were placed into a normal rucksack (dimensions: 40 cm × 30
cm × 10 cm, weight 5 kg with the equipment) that the test
persons carried during the measurement sessions. The sensors
were put on the test person with help of an assistant before
the start of the measurement session. The system measured 18
different quantities from the user and his environment (Table
I). Some of the quantities were measured with multiple sen-
sors, which resulted in altogether 22 signals and 35 channels
of data.

During the measurement sessions, the test persons followed
a scenario (Table II) that describes the tasks they should at least
do and locations they should at least visit. The scenario consists
of visits to several everyday places (bus, restaurant, shop, and
library) and of several physical activities (lying, sitting, stand-
ing, walking, Nordic walking, running, rowing, cycling). Nordic
walking is fitness walking with specifically designed poles to
engage the upper body.

Because the signals have large interindividual difference
in different activities, we recruited 16 volunteers (13 males,
3 females, age 25.8 ± 4.3 years, body mass index [BMI]
24.1 ± 3.0 kg/m2) to gather a representative dataset for al-
gorithm development. The volunteers were recruited by us-
ing bulletin board and news advertisements at a local uni-
versity. The duration of each measurement session was about
2 h. The durations varied between measurement sessions be-
cause of the loose scenario, which was not supposed to be
followed strictly. Because the goal was to collect realistic
data, the test persons were given a lot of freedom during
the measurement session. For example, they could choose
the restaurant and shop they preferred. Also the order of
places visited and time spent in each place depended on the
test person.

The test person was accompanied by an annotator (same
person for all cases), who used a personal digital assistance
(PDA) to mark changes in context for reference purposes. An
annotation application (Fig. 1) was written for a PDA using
C#.NET. The annotation application provides a UI for visual-
izing and changing the currently selected and active contexts.
In the UI, the contexts are organized hierarchically into up-
per level context types, e.g., activity and lower level context
values, e.g., lie or sit. The context values are mutually exclu-
sive. As a context value changes, the annotator taps on the
name of the new context value with the PDA pen. The soft-
ware stores the new state together with a timestamp on PDA
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TABLE I
SIGNALS AND SENSORS OF DATA COLLECTION SYSTEM

memory. Data collection start and end markers were manu-
ally added to annotation data and all context data to allow
synchronization of the data. The accuracy of manual markers
is ± 0.5 s. In 2-h data collection this was considered an
adequate accuracy.

TABLE II
SCENARIO FOR DATA COLLECTION

Fig. 1. Annotation Software on PDA. Checkboxes on the left are used to
expand and collapse between the title line and full view. Radio buttons are used to
mark the active context value. Eating and Drinking can be active simultaneously.
The asterisk is used to mark the context value “other.”

B. Context Data Library

After the measurements, the data were synchronized, cali-
brated, re-sampled, and converted into suitable formats [27] for
visualization. All the data (31 h) were collected into Palantir
Context Data Library 2003.
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Fig. 2. Spectogram of vertical acceleration on chest during walking, Nordic
walking and running. Horizontal axis is time.

C. Signal Processing and Feature Extraction

The goal in context recognition is to develop algorithms that
can automatically infer the annotated context from the collected
signals. The signals were first visually inspected and compared
against the annotated contexts. This gave us the first impression
on which signals are more useful than others. Feature signals
(1-Hz sampling rate) were calculated from the raw data.

A priori information was used to select which features to
calculate. For example, walking and running (measured in re-
alistic circumstances) have constant frequency, which did not
vary much between test persons either. Walking is seen as 2 Hz
and running as 2.5–3 Hz oscillation in the signal (Fig. 2).

Time-domain features calculated were mean, variance, me-
dian, skew, kurtosis, 25% percentile and 75% percentile counted
using a sliding window. Frequency-domain features were spec-
tral centroid, spectral spread, estimation of frequency peak, es-
timation of power of the frequency peak, and signal power in
different frequency bands. For acceleration both 4-s and 10-s
windows were used. For blood oxygen saturation (SaO2) the
window was 10 s, for respiratory effort it was 60 s, and for all
others it was 1 s.

Time-domain features were calculated for 1) body position;
2) humidity; 3) blood oxygen saturation SaO2 ; 4) skin resis-
tance; 5) skin temperature; and 6) environmental temperature.
Both time and frequency domain features were calculated for 1)
accelerations; 2) magnetometer signals; 3) environmental light
intensity; and 4) respiratory effort.

In addition to the basic time- and frequency-domain features,
the following features were calculated. Speech was detected
from audio signal using a modified version of a speech/music
discriminator [28]. Radius and two angles describing the vec-
tor of magnetic field as well as ratio between frequency bands
1–1.5 Hz and 0–5 Hz were calculated from magnetometer sig-
nals. R-peaks were detected and different features related to
heart rate variability (e.g., R-R interval) were calculated from
the electrocardiogram [29]. Speed was calculated from GPS
location data. Power on frequency band 80–100 Hz was calcu-
lated from a light-intensity signal. Respiratory frequency, tidal
volume, frequency and amplitude deviations, rate of ventilation

and spectral entropies were estimated and calculated from the
respiratory effort signal.

D. Feature Selection

Feature selection was based on visual and statistical analysis.
The features were visually compared against annotation to find
good candidate features. Distribution bar graphs of each feature
signal during different activities were plotted for comparison
(Fig. 4). The plots show how the distribution of each feature
signal changes between different activities. The more the dis-
tribution moves between activities and the less the distributions
overlap, the better it is for discrimination of activities.

A priori information was used in the quest for the best fea-
tures. For example, during running there is more up-down move-
ment and thus more energy in acceleration signal than during
other activities. Based on a priori information, some new fea-
tures were calculated from raw data. The best features were
selected based on the distribution bar graphs. If there were more
than one feature that could have been used for a specific deci-
sion, the feature with best discrimination power was selected.

As a result of the feature selection process, six features
(Fig. 4) were selected for classification: 1) peak frequency of
up-down chest acceleration Fpeak (chestacc,y); 2) median of
up-down chest acceleration Med(chestacc,y); 3) peak power
of up-down chest acceleration Ppeak (chestacc,y); 4) vari-
ance of back-forth chest acceleration Var(chestacc,z); 5) sum
of variances of three-dimensional (3-D) wrist accelerations∑

Var(wristacc, 3 D); 6) power ratio of frequency bands
1–1.5 Hz and 0.2–5 Hz measured from left-right magnetometer
on chest P1 (chestmagn,x).

E. Classification

During the feature selection process it was noticed that with
the selected sensor setup, it was not possible to discriminate sit-
ting and standing from each other (see Discussion for more
details). Thus sitting and standing were combined into one
class, resulting in seven target classes for classification: 1) lying;
2) sitting/standing; 3) walking; 4) Nordic walking; 5) running;
6) rowing (with a rowing machine); and 7) cycling (with an
exercise bike). Three different classifiers were used in classi-
fication. All of them were given the same set of six features
as inputs.

For classification, two decision trees were applied, namely a
custom decision tree and an automatically generated decision
tree. Also, an artificial neural network (ANN) was used as a ref-
erence classifier. Decision trees have been successfully applied
to activity recognition earlier [16]. The custom decision tree was
selected to represent a simple and transparent approach based
on human rationalization. The automatically generated decision
tree was selected to see how well the automatic tree genera-
tion algorithm performs compared with human-made rules. An
advantage of the decision trees is that the problem of context
recognition is divided in to smaller subproblems, which are
tackled one by one very intuitively.

The recorded data were used for context recognition on a
second-by-second basis by using the feature signals as inputs
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Fig. 3. Custom decision tree.

and PDA annotations as targets. For all three classifiers the
results were acquired by 12-fold leave-one-subject-out cross-
validation.

1) Custom Decision Tree: The custom decision tree (Fig. 3)
was built by using domain knowledge and visual inspec-
tion of the signals. The tree has 13 nodes, 7 of which are
leaf nodes and 6 of which represent a binary decision. The
decisions can be named with questions: 1) footsteps?; 2) ly-
ing?; 3) running?; 4) rowing?; 5) Nordic walking?; 6) cycling?.
The numbering refers to numbers of the six selected features.
Leaf-nodes “sitting/standing” and “walking” can be considered
as classes “other,” because everything that is not recognized as
any of the activities in upper levels of the tree falls into these cat-
egories. This is in line with the data, because the context value
“other” was not used in annotations either. Fig. 4 depicts the
decisions made in the nodes: it shows the distributions of fea-
ture data during each activity. The circled activities are relevant
for the node; others have been ruled out in the upper level deci-
sions. For each branch of the tree, the threshold value was de-
fined by using a 12-fold leave-one-subject-out cross-validation.
The threshold value for each node was chosen to be the average
of the acquired 12 thresholds. The threshold values remained
unchanged during the whole validation process.

2) Automatically Generated Decision Tree: An automati-
cally generated decision tree was generated using a Matlab
(MathWorks Inc, Natick, MA) Statistics Toolbox function called
“treefit.” The rule for splitting was Gini’s index [30], which is
one of the standard options. It progressively looks for the largest
class in the data set and tries to isolate it from the rest of the data.
The results were obtained by using leave-one-subject-out cross-
validation resulting in separate training/validation sessions for
each subject. In each training/validation session the tree was
built using the training data (containing data from all but one
subject), pruned to an optimum level (the level with the lowest
error rate in the training set) using cross-validation within the
training data, and the obtained tree was used to classify the data
of the left-out subject. It should be noted that the size of the tree
may be different in each training/validation session. In average

the tree had 9.7 branches (minimum, 7; maximum, 14) and 10.7
leafs (minimum, 8; maximum, 15).

3) Artificial Neural Network: A multilayer perceptron with
resilient backpropagation as the training algorithm was used as
the artificial neural network classifier. The sizes of input, hidden
and output layers were 6, 15 and 7, respectively. The output that
had the highest value was selected as the classification result.

F. Postprocessing

Classification was made for each second of the data inde-
pendently, and no temporal connections were considered. This
resulted in rapid changes of the classification results especially
at transitions between two activities. For instance, getting up
from a sitting or lying position produced high acceleration peaks
that caused misclassification. Activities that only last for a few
seconds are not realistic. Thus, median filtering was used on the
results of all three classifiers to use simple temporal logic to filter
out short-duration misclassifications. The median filter replaces
short activities with the surrounding longer duration activity.
After several experiments, a median filter of 31 s was selected.
A median filter this long may prevent the recognition of some
short periods of activities (such as short walks) but it improves
the overall classification. Both causal and anticausal versions
were tested, and with the selected filter length their results were
very close to each other. Anticausal filtering worked slightly
better. Fig. 5 demonstrates the difference between filtered and
unfiltered results.

III. RESULTS

A. Data Quality

Data from 12 of 16 cases were used in classification. Data of
four cases were left out because of missing wrist acceleration
signals. The wrist acceleration signals were lost because of a
hardware problem.

B. Classification Results

Tables III–V show the confusion matrices for the three differ-
ent classifiers. In the tables, each sample represents 1 s. Table VI
summarizes the classification accuracies of different activities.

IV. DISCUSSION

We classified activities from realistic, out-of-lab context data
using three different classifiers and six feature signals as inputs.
Classification was done with 1-s time resolution; thus each sec-
ond of the data was classified and compared with annotated
data. Only a few previous studies have recognized activities
from data measured in the out-of-lab environment. Rowing and
Nordic walking have not been recognized in previous studies.
Lying, sitting, standing, walking, running, and cycling have also
been recognized in previous studies.

Bao and Intille [16] achieved recognition accuracy of 94.96%
for lying down and relaxing, 94.78% for sitting and relaxing,
95.67% for standing still, 89.71% for walking, 87.,68% for
running, and 96.29% for bicycling. Their data were measured in
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Fig. 4. Nodes of custom decision tree. Figure depicts distributions of feature signals during different activities. Activities marked with an R fall into right branch
and activities marked an L fall into left branch of node. Circled activities are relevant for the node, others have been ruled out in upper level nodes.

Fig. 5. Classification results before (top) and after (bottom) median filter-
ing. During black time intervals on the timeline sitting is classified as active
(sitting = true). During white time intervals, sitting is not classified as active
(sitting = false). Most of the sitting intervals that are shorter than 15 seconds
are replaced with the dominant activity by median filtering.

TABLE III
CONFUSION MATRIX OF CUSTOM DECISION TREE

a naturalistic environment, which is comparable to our setting.
They used five acceleration sensors on the hip, wrist, arm, ankle,
and thigh. They concluded that the thigh and wrist could be the
ideal locations for activity recognition.

Absence of an accelerometer on the lower body is a limitation
in our study. An extra accelerometer on the lower body would
probably improve classification accuracy. Placing an accelerom-
eter on the thigh was also considered in our study, but the thigh
was not seen as a feasible sensor placement for a consumer
product and this placement was ignored.

TABLE IV
CONFUSION MATRIX OF AUTOMATICALLY GENERATED DECISION TREE

TABLE V
CONFUSION MATRIX OF ARTIFICIAL NEURAL NETWORK

Foerster et al. [15] achieved recognition accuracy (subactiv-
ities combined) of 89% for lying, 100% for sitting, 88% for
standing, 99% for walking, and 100% for cycling. Their data
were collected in an out-of-lab environment. They segmented
the data manually into 20 s or longer segments according to the
behavior observation. Results were obtained by classifying the
selected segments only (466 segments). About the segmentation
they mention: “The classification can be improved by lengthen-
ing segments...” They used four sensor placements (chest, wrist,
thigh, and lower leg). In our study, 1-s segments were used
(72 272 segments).
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TABLE VI
CLASSIFIER RESULTS [%]

A. Confusions

Much of our classifiers’ confusion seen in the results can
be explained with transitions from one activity to another. The
annotator was not given the choice to annotate “transition,” but
he had to switch from one activity to another instantly at some
point during the transition. The transition is sometimes gradual,
for example, when sitting changes to lying. The resulting inac-
curacy is especially visible in the recognition of lying, which
should be detected almost perfectly from the direction of grav-
ity. Because lying periods were short, the uncertainty caused
by transition periods in the beginning and end of lying became
significant.

Lying is detected by the custom-made decision tree as a com-
bination of decisions “no footsteps” and “lying.” Duration of
each lying period was only 2 min per case (total, 27 min) and
confusion is 13 s per case (total, 3.5 min). The inaccuracy in
annotation and duration of transition from sitting/standing to
lying was in practice in this order. The artificial neural network
additionally confuses lying with walking.

Recognition of running combines decisions “footsteps” and
“running.” Recognition of footsteps is rather clear (Fig. 4, node
1). The distributions of activities including footsteps and not
including footsteps do not overlap much. The total amount of
annotated running is about 39 min. The custom decision tree
and the automatic decision tree recognize running very well.
About 1 min of running is confused with standing and a few
seconds with walking. Again, at least on part, the classifiers can
be more accurate than the annotation and part of the confusion
is not really confusion at all. Running started from the standing
position and because of cars, slippery weather, etc. some walk-
ing and stops are included in the period annotated as “running.”
Artificial neural network confuses running heavily with other
activities, especially with Nordic walking and walking.

Rowing is recognized as combination of decisions “no foot-
steps,” “no lying.” and “rowing.” The custom decision tree rec-
ognizes 27 min of the total 40 min annotated as rowing. Because
this includes data from 12 cases and rowing was started and
ended by sitting, some sitting may indeed have been annotated
as rowing. However, the amount of confusion toward sitting is
rather large, so some classification error is also present. In addi-
tion, confusion with walking cannot be explained with annota-
tion inaccuracy. The automatic decision tree similarly confuses
rowing with sitting/standing and with walking. The artificial
neural network commits the same error and further confuses 1
min of rowing as running.

Walking is one of the most common activities in this data
set as in everyday life. Walking is recognized as combina-
tion of decisions “footsteps,” “no running,” and “no Nordic
walking.” Distributions of walking and Nordic walking partly
overlap when using the feature in node 5. Both decision trees
confuse walking mostly with Nordic walking and with sit-
ting/standing. The artificial neural network confuses walking
mostly with sitting/standing. Confusion with sitting/standing
can be explained with inaccuracies in annotation. Activity an-
notated as walking often includes short periods of standing.
Very short periods of walking between other dominant activi-
ties, even if annotated correctly and classified correctly by the
decision tree, are replaced with dominating activity by the post-
processing method in the classification results. This degrades the
performance when lots of short periods of walking are present.

Nordic walking was detected from increased arm motion. This
approach is successful when the poles are used as effectively as
they should be used. People not familiar with Nordic walking
tend to use the poles very little and smoothly. Such use of the
poles creates problems for recognition because the accelerations
measured from the wrist have very low amplitude. This fact can
be utilized, e.g., in teaching effective Nordic walking.

Sitting/standing is the most dominant activity in this data
library and for most people in their everyday lives. It is recog-
nized by combining decisions “no footsteps,” “no lying,” “no
rowing,” and “no cycling.” All of the three classifiers classify
sitting/standing rather well, mostly confusing them with walk-
ing. This is partly due to annotation inaccuracy. For example,
in a library the activity annotated as standing includes very
short periods of walking, which has not always been annotated
correctly. Also, if annotated and classified correctly, very short
periods of standing are replaced with the dominating activity by
postprocessing.

Cycling with an exercise bike is detected from the left-right
movement of chest by using the magnetometer signal. The dis-
tribution of cycling in this feature overlaps slightly with sit-
ting/standing and thus some confusion with sitting/standing
is inevitable. A small amount of annotation inaccuracy can
be present mostly in the beginning and end of activities an-
notated as exercise biking. These are because the test per-
son does not start or stop cycling exactly at the same time
with annotation.

B. Classifiers

The custom decision tree treats the different activities more
equally than the other classifiers because it optimizes perfor-
mance of one node at a time, not the overall performance as
the other classifiers do. That is why it has the best recognition
accuracy for more than half of the activities, but the overall ac-
curacy is not the best. The automatically generated tree had the
best overall performance. This is in line with earlier studies [16].
For artificial neural network classification, the everyday data are
rather noisy. Thus the artificial neural network easily overfits.
Noticeable in neural network results is the poor recognition of
running, which was well recognized by both of the decision tree
classifiers.
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C. Physiological Signals

Physiological signals such as heart rate and respiration were
expected to have a larger role in activity recognition. Although
they have been previously used together with accelerometers in
ambulatory monitoring [14], they did not provide very useful
data for activity recognition in our setup, in part, because they
react to activity changes with a delay. The physiological signals
correlate with the intensity level of the activity, but they do
not reflect the type of activity (e.g., cycling versus walking),
nor the duration of activity very accurately. With physiological
signals (e.g., heart rate), the interindividual difference is also
large, which creates extra challenge for algorithm development.

D. Sensors

In this study, accelerometers proved to be the most
information-rich and most accurate sensors for activity recogni-
tion. They react fast to activity changes and they reflect well the
type of activity. Placement of accelerometers in this study on
rucksack straps and on wrists did not make it possible to separate
sitting and standing from each other, because there was no clear
change in the signal properties between these two activities.
Different approaches were tried for detection of these activities.
For example, it was assumed that the direction of a test person’s
body would stay more stable during sitting than during standing.
However, the recorded data did not show such behavior. In the
future, we will consider placing one accelerometer on the waist
to enable discrimination of sitting from standing.

Even though gravity and magnetic flux are fundamentally
different measures (e.g., direction), our data showed that for ac-
tivity recognition, the information content of accelerometer and
magnetometer signals is similar. Our 3D magnetometer and 3D
accelerometer were located in one box, attached on a rucksack
strap. When visually comparing the signals recorded during dif-
ferent physical activities, the magnetometer signal looks like a
low-pass-filtered version of the accelerometer signal.

E. Temporal Connections Between Activities

Temporal connections between activities were not thoroughly
studied in this work. In this study a median filter was used
to remove very short activities from classifier results. Use of
median filtering degrades the classification accuracy of the
short-duration activities, which may be a problem in some ap-
plications. However, when aiming for a daily summary of activ-
ities, this is not a major problem. Utilizing the temporal history
of activities might improve accuracy of activity recognition.
Probabilistic models can be used to help in classification pro-
cess, especially in transition from one recognized activity type
to another. In [20] Markov chains have been used to assign
probabilities to state transfers from one activity to another. The
model is used to inhibit class change based on raw data only.
If the transition has low probability, more requests from raw
data classification are required before the change is accepted by
the overall classification system. The drawback of this approach
is that it requires a lot of realistic training data and probably
also user-specific training data. However, in the future we will

Fig. 6. Portions of activities in annotation (left) and results of custom deci-
sion tree (right). Activities clockwise from 12 o’clock: lying, rowing, cycling,
sitting/standing, running, Nordic walking, walking.

consider using a probabilistic model to reduce the number of
(short-duration) false recognitions.

F. Rucksack

Weight of the rucksack with the equipment was approxi-
mately 5 kg. This felt like a normal rucksack. Before selecting
the rucksack, we also tried a belt bag, but compared with the
rucksack, it felt uncomfortable with the equipment. In the data
collection, the rucksack may have some effect on the activities,
but it was not considered disturbing by the volunteers. Note that
in this study placement of the chest acceleration sensor on the
rucksack strap may affect the signal during dynamic activities,
like running, because the rucksack moves slightly. However,
in overall activity classification, the effect caused by rucksack
movement is not significant.

G. Application: Activity Diary

Automatic classification of everyday activities can be used for
promotion of a healthier lifestyle, e.g., with an “activity diary.”
The user could, e.g., in the evening check what kind of activities
he has done during the day and how much time he has spent on
each activity. Fig. 6 depicts the portions of our data in the form
of an “activity diary.”

V. CONCLUSION

Results of activity recognition were encouraging. With care-
ful selection and placement of sensors, several everyday activ-
ities can be automatically recognized with good accuracy by
using feature extraction and classification algorithms. Informa-
tion about the daily activities can be used in consumer products
to show the user his daily activity diary. This would increase the
user’s awareness of his daily activity level and promote a more
active lifestyle.
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Juha Pärkkä received the M.Sc. (Tech.) degree in
information technology (digital signal processing)
from Tampere University of Technology in Tampere,
Finland, in 1997.

Currently, he is working as a research scientist at
VTT Information Technology in Tampere, Finland.
His main research interests are biomedical signal pro-
cessing and ubiquitous computing.

Miikka Ermes is studying for the M.Sc. degree in
Tampere University of Technology. He is majoring in
signal-processing methods and he is currently finish-
ing his M.Sc. thesis concerning activity recognition.

Currently, he is working as a Research Trainee at
VTT Information Technology in Tampere, Finland.

Panu Korpipää (M’05) received his M.Sc. (Tech.)
degree in electrical engineering (software engineer-
ing) from the University of Oulu, Finland, in 1996.

Currently, he is working as a senior research sci-
entist at VTT Electronics, Advanced Interactive Sys-
tems, Oulu, Finland. His professional interests in-
clude mobile and context aware computing, novel
user interfaces, and visualization.



128 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 10, NO. 1, JANUARY 2006

Jani Mäntyjärvi received the M.Sc. degree in bio-
physics and the Ph.D. degree in information process-
ing from the University of Oulu in 1999 and 2004,
respectively.

Currently, he is a senior research scientist at the
Technical Research Center of Finland, VTT Electron-
ics. His current professional interests include perva-
sive and context-aware computing for handheld de-
vices, wearable sensing, and technologies for adap-
tive interaction.

Johannes Peltola received the M.Sc. (Tech.) degree
in electrical engineering from the University of Oulu,
Finland, in 1998.

Currently, he is working as a research scientist
in VTT Electronics, Oulu. His research topics are
multimedia signal-processing algorithms for source
compression, content analysis, and joint source chan-
nel coding. He is also leading a research team in the
field of these topics.

Ilkka Korhonen (M’98) received the M.Sc. and
Dr.Tech. degrees in digital signal processing from
Tampere University of Technology in 1991 and 1998,
respectively.

Currently, he is currently working as a research
professor for intuitive information technology at VTT
Information Technology. He is a docent in medical
informatics (with a speciality on biosignal process-
ing) in Ragnar Granit Institute at Tampere University
of Technology. His main research interests include
biosignal interpretation methods and pervasive health

care technologies, especially their application in critical care patient monitoring,
wearable biomedical monitoring, and home health monitoring. He has published
more than 60 original papers in international scientific journals and conference
proceedings.


