
Fast and Scalable Training of Semi-Supervised CRFs

with Application to Activity Recognition

Maryam Mahdaviani
Computer Science Department
University of British Columbia

Vancouver, BC
Canada

Tanzeem Choudhury
Intel Research

1100 NE 45th Street
Seattle, WA 98105

USA

Abstract

We present a new and efficient semi-supervised training method for parameter es-
timation and feature selection in conditional random fields (CRFs). In real-world
applications such as activity recognition, unlabeled sensor traces are relatively
easy to obtain whereas labeled examples are expensive and tedious to collect.
Furthermore, the ability to automatically select a small subset of discriminatory
features from a large pool can be advantageous in terms of computational speed as
well as accuracy. In this paper, we introduce the semi-supervised virtual evidence
boosting (sVEB) algorithm for training CRFs – a semi-supervised extension to the
recently developed virtual evidence boosting (VEB) method for feature selection
and parameter learning. The objective function of sVEB combines the unlabeled
conditional entropy with labeled conditional pseudo-likelihood. It reduces the
overall system cost as well as the human labeling cost required during training,
which are both important considerations in building real-world inference systems.
Experiments on synthetic data and real activity traces collected from wearable
sensors, illustrate that sVEB benefits from both the use of unlabeled data and au-
tomatic feature selection, and outperforms other semi-supervised approaches.

1 Introduction

Conditional random fields (CRFs) are undirected graphical models that have been successfully ap-
plied to the classification of relational and temporal data [1]. Training complex CRF models with
large numbers of input features is slow, and exact inference is often intractable. The ability to select
the most informative features as needed can reduce the training time and the risk of over-fitting of
parameters. Furthermore, in complex modeling tasks, obtaining the large amount of labeled data
necessary for training can be impractical. On the other hand, large unlabeled datasets are often easy
to obtain, making semi-supervised learning methods appealing in various real-world applications.

The goal of our work is to build an activity recognition system that is not only accurate but also scal-
able, efficient, and easy to train and deploy. An important application domain for activity recognition
technologies is in health-care, especially in supporting elder care, managing cognitive disabilities,
and monitoring long-term health. Activity recognition systems will also be useful in smart environ-
ments, surveillance, emergency and military missions. Some of the key challenges faced by current
activity inference systems are the amount of human effort spent in labeling and feature engineering
and the computational complexity and cost associated with training. Data labeling also has privacy
implications because it often requires human observers or recording of video. In this paper, we intro-
duce a fast and scalable semi-supervised training algorithm for CRFs and evaluate its classification
performance on extensive real world activity traces gathered using wearable sensors. In addition
to being computationally efficient, our proposed method reduces the amount of labeling required
during training, which makes it appealing for use in real world applications.

1

Several supervised techniques have been proposed for feature selection in CRFs. For discrete fea-
tures, McCallum [2] suggested an efficient method for feature induction by iteratively increasing
conditional log-likelihood. Dietterich [3] applied gradient tree boosting to select features in CRFs
by combining boosting with parameter estimation for 1D linear-chain models. Boosted random
fields (BRFs) [4] combine boosting and belief propagation for feature selection and parameter esti-
mation for densely connected graphs that have weak pairwise connections. Recently, Liao et.al. [5]
developed a more general version of BRFs, called virtual evidence boosting (VEB) that does not
make any assumptions about graph connectivity or the strength of pairwise connections. The ob-
jective function in VEB is a soft version of maximum pseudo-likelihood (MPL), where the goal is
to maximize the sum of local log-likelihoods given soft evidence from its neighbors. This objective
function is similar to that used in boosting, which makes it suitable for unified feature selection and
parameter estimation. This approximation applies to any CRF structures and leads to a significant
reduction in training complexity and time. Semi-supervised training techniques have been exten-
sively explored in the case of generative models and naturally fit under the expectation maximization
framework [6]. However, it is not straight forward to incorporate unlabeled data in discriminative
models using the traditional conditional likelihood criteria. A few semi-supervised training meth-
ods for CRFs have been proposed that introduce dependencies between nearby data points [7, 8].
More recently, Grandvalet and Bengio [9] proposed a minimum entropy regularization framework
for incorporating unlabeled data. Jiao et.al. [10] used this framework and proposed an objective
function that combines the conditional likelihood of the labeled data with the conditional entropy of
the unlabeled data to train 1D CRFs, which was extended to 2D lattice structures by Lee et.al. [11].

In our work, we combine the minimum entropy regularization framework for incorporating unla-
beled data with VEB for training CRFs. The contributions of our work are: (i) semi-supervised
virtual evidence boosting (sVEB) - an efficient technique for simultaneous feature selection and
semi-supervised training of CRFs, which to the best of our knowledge is the first method of its
kind, (ii) experimental results that demonstrate the strength of sVEB, which consistently outper-
forms other training techniques on synthetic data and real-world activity classification tasks, and
(iii) analysis of the time and complexity requirements of our algorithm, and comparison with other
existing techniques that highlight the significant computational advantages of our approach. The
sVEB algorithm is fast and easy to implement and has the potential of being broadly applicable.

2 Approaches to training of Conditional Random Fields

Maximum likelihood parameter estimation in CRFs involves maximizing the overall conditional
log-likelihood, where x is the observation sequence and y is the hidden state sequence:

L(θ) = log(p(y|x, θ)) − ‖θ‖/2 = log

exp(
K∑

k=1

θkfk(x,y))

∑
y′

exp(
K∑

k=1

θkfk(x,y′))

− ‖θ‖/2 (1)

The conditional distribution is defined by a log-linear combination of k features functions fk associ-
ated with weight θk. To avoid overfitting, it is common to use a regularizer on θ to keep the weights
from getting too large, expressed by the second term in equation (1)1. For large CRFs exact training
is often computationally intractable and various approximate methods are used, such as mean field
approximation or loopy belief propagation [12, 13].

An alternative to approximating the conditional likelihood is to change the objective function.
MPL [14] and VEB [5] are such techniques. For MPL the CRF is cut into a set of independent
patches; each patch consists of a hidden node or class label yi, the true value of its direct neighbors
and the observations, i.e., the Markov Blanket(MByi

) of the node. The parameter estimation then
becomes maximizing the pseudo log-likelihood:

Lpseudo(θ) =
N∑

i=1

log(p(yi|MByi
, θ)) =

N∑
i=1

log
exp(

KP
k=1

θkfk(MByi
,yi))P

y′

i

exp(
KP

k=1

θkfk(MBy′

i
,y′

i
))

MPL has been known to over-estimate the dependency parameters in some cases and there is no
general guideline on when it can be safely used [15].

1
When a prior is used in the maximum likelihood objective function as a regularizer, the method is in fact called maximum a posteriori.

2

2.1 Virtual evidence boosting

By extending the standard LogitBoost algorithm [16], VEB integrates boosting based feature selec-
tion into CRF training and maximizes its objective by sequentially learning a set of weak learners
fts. The objective function used in VEB is very similar to MPL, except that VEB uses the messages
from the neighboring nodes as virtual evidence instead of using the true labels of neighbors. The
use of virtual evidence helps to reduce over-estimation of neighborhood dependencies. We briefly
explain the approach here but please refer to [5] for more detail.

VEB incorporates two types of observations nodes: (i) hard evidence corresponding to the observa-
tions ve(xi), which are indicator functions at the observation values and (ii) soft evidence, corre-
sponding to the messages from neighboring nodes ve(n(yi)), which are discrete distributions over

the hidden states. Let vei , {ve(xi),ve(n(yi))}. The objective function of VEB is as follows:

LV EB(θ) =

N∑

i=1

log(p(yi|vei, θ)), where p(yi|vei, θ) =

∑
vei

vei exp(
K∑

k=1

θkfk(vei, yi))

∑
y′

i

∑
vei

vei exp(
K∑

k=1

θkfk(vei, y′

i))

(2)

VEB learns a set weak learners fts iteratively and estimates the combined feature Ft = Ft−1 + ft

by solving the following weighted least square error(WLSE) problem:

ft(vei) = arg min
f

N∑

i=1

wiE(f(vei) − zi)
2 = arg min

f
[

N∑

i=1

∑

vei

wip(yi|vei)(f(vei) − zi)
2] (3)

where wi = p(yi|vei)(1 − p(yi|vei)), zi =
yi − 0.5

p(yi|vei)
(4)

The wi and zi in equation 4 are the boosting weight and working response respectively for the ith

data point, exactly as in LogitBoost. However, the least square problem for VEB (eq.3) involves
NX points because of virtual evidence as opposed to N points in LogitBoost. Although eq. 4 is
given for the binary case (i.e. yi ∈ {0, 1}), it is easily extendible to the multi-class case and we have
done that in our experiments. At each iteration, vei is updated as messages from n(yi) changes
with the addition of new features. We run belief propagation (BP) to obtain the virtual evidence
before each iteration. The CRF feature weights, θ’s are computed by solving the WLSE problem:

θk =
N∑

i=1

wizinki/
N∑

i=1

winki.

In case of local features, nki is the count of feature k in data instance i. For the compatibility
features, nki is the virtual evidence from the neighbors.

2.2 Semi-supervised training

For semi-supervised training of CRFs, Jiao et.al. [10] have proposed an algorithm that utilizes unla-
beled data via entropy regularization – an extension of the approach proposed by [9] to structured
CRF models. The objective function that is maximized during semi-supervised training of CRFs is
given below, where (xl,yl) and (xu,yu) represent the labeled and unlabeled data respectively:

LSS(θ) = log p(yl|xl, θ) + α
∑
yu

p(yu|xu, θ)log p(yu|xu, θ) − ‖θ‖/2

By minimizing the conditional entropy of the unlabeled data, the algorithm will generally find la-
beling of the unlabeled data that mutually reinforces the supervised labels. One drawback of this
objective function is that it is no longer concave and in general there will be local maxima. The
authors [10] showed that this method is still effective in improving an initial supervised model.

3 Semi-supervised virtual evidence boosting

In this work, we develop semi-supervised virtual evidence boosting (sVEB) that combines feature
selection with semi-supervised training of CRFs. sVEB extends the VEB framework to take advan-
tage of unlabeled data via minimum entropy regularization similar to [9, 10, 11]. The new objective

3

function LsV EB we propose is as follows, where (i = 1 · · ·N) are labeled and (i = N + 1 · · ·M)
are unlabled examples:

LsV EB =

N∑

i=1

log p(yi|vei) + α

M∑

i=N+1

∑

y′

i

p(y′

i|vei) log p(y′

i|vei) (5)

The sVEB aglorithm, similar to VEB, maximizes the conditional soft pseudo-likelihood of the la-
beled data but in addition minimizes the conditional entropy over unlabeled data. The α is a tuning
parameter for controlling how much influence the unlabeled data will have.

By considering the soft pseudo-likelihood in LsV EB and using BP to estimate p(yi|vei), sVEB can
use boosting to learn the parameters of CRFs. The virtual evidence from the neighboring nodes
captures the label dependencies. There are three different types of feature functions fs that’s used:
for continuous observations f1(xi) is a linear combination of decision stumps, for discrete obser-
vations the learner f2(xi) is expressed as indicator functions, and for virtual evidences the weak
learner f3(xi) is the weighted sum of two indicator functions (for binary case). These functions are
computed as follows, where δ is an indicator function, h is a threshold for the decision stump, and
D is the number of dimensions of the observations:

f1(xi) = θ1δ(xi ≥ h) + θ2δ(xi < h), f2(xi) =

D∑

k=1

θkδ(xi = d), f3(yi) =

1∑

k=0

θkδ(yi = k) (6)

Similar to LogitBoost and VEB, the sVEB algorithm estimates a combined feature function F that
maximizes the objective by sequentially learning a set of weak learners, ft’s (i.e. iteratively selecting
features). In other words, sVEB solves the following weighted least-square error (WLSE) problem
to learn fts:

ft = arg min
f

[

N∑

i=1

∑

vei

wip(yi|vei)(f(xi) − zi)
2 +

M∑

i=N+1

∑

y′

i

∑

vei

wip(y′

i|vei)(f(xi) − zi)
2] (7)

For labeled data (first term in eq.7), boosting weights, wi’s, and working responses, zi’s, are com-
puted as described in equation 4. But for the case of unlabeled data the expression for wi and zi

becomes more complicated because of the entropy term. We present the equations for wi and zi

below, please refer to the Appendix for the derivations:

wi = α2(1 − p(yi|vei))[p(yi|vei)(1 − p(yi|vei)) + log p(yi|vei)]

zi =
(yi − 0.5)p(yi|vei)(1 − log p(yi|vei))

α[p(yi|vei)(1 − p(yi|vei)) + log p(yi|vei)]
(8)

The soft evidence corresponding to messages from the neighboring nodes is obtained by running BP
on the entire training dataset (labeled and unlabeled). The CRF feature weights θks are computed

by solving the WLSE problem (e.q.(7)), θk =
M∑
i=1

∑
yi

wizinki/
M∑
i=1

∑
yi

winki

Algorithm 1 gives the pseudo-code for sVEB. The main difference between VEB and sVEB are
steps 7 − 10, where we compute wi’s and zi’s for all possible values of yi based on the virtual
evidence and observations of unlabeled training cases. The boosting weights and working responses
are computed using equation (8). The weighted least-square error (WLSE) equation (eq. 7) in step
10 of sVEB is different from that of VEB and the solution results in slightly different CRF feature
weights, θ’s. One of the major advantages of VEB and sVEB over ML and sML is that the parameter
estimation is done by mainly performing feature counting. Unlike ML and sML, we do not need to
use an optimizer to learn the model parameters which results in a huge reduction in the time required
to train the CRF models. Please refer to the complexity analysis section for details.

4 Experiments

We conduct two sets of experiments to evaluate the performance of the sVEB method for training
CRFs and the advantage of performing feature selection as part of semi-supervised training. In
the first set of experiments, we analyze how much the complexity of the underlying CRF and the
tuning parameter α effect the performance using synthetic data. In the second set of experiments, we
evaluate the benefit of feature selection and using unlabeled data on two real-world activity datasets.

4

Algorithm 1: Training CRFs using semi-supervised VEB

inputs : structure of CRF and training data (xi, yi), with yi ∈ {0, 1}, 1 ≤ i ≤ M , and F0 = 0
output: Learned FT and their corresponding weights, θ

for t = 1, 2, · · · , T do1

Run BP using Ft to get virtual evidences vei;2

for i = 1, 2, · · · , N do3

Compute likelihood p(yi|vei);4

Compute wi and zi using equation (4)5

end6

for i = N + 1, ...,M and yi = 0, 1 do7

Compute likelihood p(yi|vei);8

Compute wi and zi using equation (8)9

end10

Obtain “best” weak learner ft according to equation (7) and update Ft = Ft−1 + ft ;11

end12

We compare the performance of the semi-supervised virtual evidence boosting(sVEB) presented in
this paper to the semi-supervised maximum likelihood (sML) method [10]. In addition, for the ac-
tivity datasets, we also evaluate an alternative approach (sML+Boost), where a subset of features
is selected in advance using boosting. To benchmark the performance of the semi-supervised tech-
niques, we also evaluate three different supervised training approaches, namely maximum likelihood
method using all observed features(ML), (ML+Boost) using a subset of features selected in advance,
and virtual evidence boosting (VEB). All the learned models are tested using standard maximum a
posteriori(MAP) estimate and belief propagation. We used a l2-norm shrinkage prior as a regularizer
for the ML and sML methods.

4.1 Synthetic data

The synthetic data is generated using a first-order Markov Chain with self-transition probabilities
set to 0.9. For each model, we generate five sequences of length 4,000 and divide each trace into
sequences of length 200. We randomly choose 50% of them as the labeled and the other 50% as un-
labeled training data. We perform leave-one-out cross-validation and report the average accuracies.

To measure how the complexity of the CRFs affects the performance of the different semi-supervised
methods, we vary the number of local features and the number of states. First, we compare the per-
formance of sVEB and sML on CRFs with increasing the number of features. The number of states
is set to 10 and the number of observation features is varied from 20 to 400 observations. Figure
(1a) shows the average accuracy for the two semi-supervised training methods and their confidence
intervals. The experimental results demonstrate that sVEB outperforms sML as we increase the di-
mension of observations (i.e. the number of local features). In the second experiment, we increase
the number of classes and keep the dimension of observations fixed to 100. Figure (1b) demonstrates
that sVEB again outperforms sML as we increase the number of states. Given the same amount of
training data, sVEB is less likely to overfit because of the feature selection step. In both these ex-
periments we set the value of tuning parameter, α, to 1.5. To explore the effect of tuning parameter
α, we vary the value of α from 0.1 to 10 , while setting the number of states to 10 and the number
of dimensions to 100. Figure (1c) shows that the performance of both sML and sVEB depends on
the value of α but the accuracy decreases for large α’s similar to the sML results presented in [10].

4.2 Activity dataset

We collected two activity datasets using wearable sensors, which include audio, acceleration, light,
temperature, pressure, and humidity. The first dataset contains instances of 8 basic physical activities
(e.g. walking, running, going up/down stairs, going up/down elevator, sitting, standing, and brushing
teeth) from 7 different users. There is on average 30 minutes of data per user and a total of 3.5 hours
of data that is manually labeled for training and testing purposes. The data is segmented into 0.25s
chunks resulting in a total of 49613 data points. For each chunk, we compute 651 features, which
include signal energy in log and linear frequency bands, autocorrelation, different entropy measures,

5

0 10 20 30 40
0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of states

A
cc

u
ra

cy

sML

sVEB

(b)

0 100 200 300 400 500
0.5

0.6

0.7

0.8

0.9

Dimension of Observations

A
cc

u
ra

cy

sML

sVEB

(a)

0 2 4 6 8 10
0.7

0.75

0.8

0.85

0.9

0.95

1

Values of α

sML

sVEB

A
cc

u
ra

cy

(c)

Figure 1: Accuracy of sML and sVEB for different number of states, local features and different values of α.

Time
C

la
ss

es
1000 2000 3000 4000 5000

1

2

3

4

5

6

7

8

Se
n

so
r T

ra
ce

s

Time

Ground truth

Inference

Figure 2: An example of a sensor trace and a classification trace

mean, variances etc. The features are chosen based on what is used in existing activity recognition
literature and a few additional ones that we felt could be useful. During training, the data from
each person is divided into sequences of length 200 and fed into linear chain CRFs as observations.
The second dataset contains instances of 5 different indoor activities (e.g. computer usage, meal,
meeting, watching TV and sleeping) from a single user. We recorded 15 hours of sensor traces over
12 days. As this set contains longer time-scale activities, the data is segmented into 1 minute chunks
and 321 different features are computed, similar to the first dataset. There are a total of 907 data
points. These features are fed into CRFs as observations, one linear chain CRF is created per day.

We evaluate the performance of supervised and semi-supervised training algorithms on these two
datasets. For the semi-supervised case, we randomly select 40% of the sequences for a given person
or a given day as labeled and a different subset as the unlabeled training data. We compare the
performance of sML and sVEB as we incorporate more unlabeled data (20%, 40% and 60%) into
the training process. We also compare the supervised techniques, ML, ML+Boost, and VEB, with
increasing amount of labeled data. For all the experiments, the tuning parameter α is set to 1.5. We
perform leave-one-person-out cross-validation on dataset 1 and leave-one-day-out cross-validation
on dataset 2 and report the average the accuracies. The number of features chosen (i. e. through
the boosting iterations) is set to 50 for both datasets – including more features did not significantly
improve the classification performance.

For both datasets, incorporating more unlabeled data improves accuracy. The sML estimate of the
CRF parameters performs the worst. Even with the shrinkage prior, the high dimensionality can still
cause over-fitting and lower the accuracy. Whereas parameter estimation and feature selection via
sVEB consistently results in the highest accuracy. The (sML+Boost) method performs better than
sML but does not perform as well as when feature selection and parameter estimation is done within
a unified framework as in sVEB. Table 2 summarize our results. The results of supervised learn-
ing algorithms are presented in Table 1. Similar to the semi-supervised results, the VEB method
performs the best, the ML is the worst performer, and the accuracy numbers for the (ML+Boost)
method is in between. The accuracy increases if we incorporate more labeled data during training.
To evaluate sVEB when a small amount of labeled data is available, we performed another set of

Labeled Average Accuracy (%) - Dataset 1
ML+all obs ML+Boost VEB

60% 62.7 ± 6.6 69.4 ± 3.9 82.6 ± 7.3

80% 73.0 ± 4.2 81.8 ± 4.7 90.3 ± 4.7

100% 77.8 ± 3.4 87.0 ± 2.3 91.5 ± 3.8

Labeled Average Accuracy (%) - Dataset 2
ML+all obs ML+Boost VEB

60% 74.3 ± 3.7 75.8 ± 3.3 88.5 ± 5.1

80% 80.6 ± 2.9 84.8 ± 2.9 93.4 ± 3.8

100% 86.2 ± 3.1 87.5 ± 3.1 93.8 ± 4.6

Table 1: Accuracy ± 95% confidence interval of the supervised algorithms on activity datasets 1 and 2

6

Un- Average Accuracy (%) - Dataset 1
labeled sML+all obs sML+Boost sVEB

20% 60.8 ± 5.4 66.4 ± 4.2 72.6 ± 2.3

40% 68.1 ± 4.8 76.8 ± 3.4 78.5 ± 3.4

60% 74.9 ± 3.1 81.3 ± 3.9 85.3 ± 4.1

Un- Average Accuracy (%) - Dataset 2
labeled sML+all obs sML+Boost sVEB

20% 71.4 ± 3.2 70.5 ± 5.3 79.9 ± 4.2

40% 73.5 ± 5.8 74.1 ± 4.6 83.5 ± 6.3

60% 75.6 ± 3.9 77.8 ± 3.2 87.4 ± 4.7

Table 2: Accuracy ± 95% confidence interval of semi-supervised algorithms on activity datasets 1 and 2

Labeled Average Accuracy (%) - Dataset 2
ML+all obs ML+Boost VEB

5% 59.2 ± 6.5 65.7 ± 8.3 71.2 ± 5.7

20% 66.9 ± 5.9 67.3 ± 8.5 77.4 ± 3.6

Labeled Average Accuracy (%) - Dataset 2
ML+all obs ML+Boost VEB

5% 71.2 ± 4.1 68.3 ± 6.7 79.7 ± 7.9

20% 71.4 ± 6.3 73.8 ± 5.2 83.1 ± 6.4

Table 3: Accuracy ± 95% confidence interval of semi-supervised algorithms on activity datasets 1 and 2

experiments on datasets 1 and 2, where only 5% and 20% of the training data is labeled respec-
tively. We used all the available unlabeled data during training. The results are shown in table 3.
These experiments clearly demonstrate that although adding more unlabeled data is not as helpful
as incorporating more labeled data, the use of cheap unlabeled data along with feature selection can
significantly boost the performance of the models.

4.3 Complexity Analysis

The sVEB and VEB algorithm are significantly faster than ML and sML because they do not need
to use optimizers such as quasi-newton methods to learn the weight parameters. For each training
iteration in sML the cost of running BP is O(clns2+cun2s3) [10] whereas the cost of each boosting
iteration in sVEB is O((cl +cu)ns2). An efficient entropy gradient computation is proposed in [17],
which reduces the cost of sML to O((cl + cu)ns2) but still requires an optimizer to maximize the
log-likelihood. Moreover, the number of training iterations needed is usually much higher than the
number of boosting iterations because optimizers such as L-BFGS require many more iterations to
reach convergence in high dimensional spaces. For example, for dataset 1, we needed about 1000
iterations for sML to converge but we ran sVEB for only 50 iterations. Table 4 shows the time for
performing the experiments on activity datasets (as described in the previous section) 2. On the
other hand the space complexity of sVEB is linearly smaller than sML and ML. Similar to ML, sML
has the space complexity of O(ns2D) in the best case [10]. VEB and sVEB have a lower space
cost of O(ns2Db), because of the feature selection step Db ≪ D usually. Therefore, the difference
becomes significant when we are dealing with high dimensional data, particularly if they include a
large number of redundant features.

Time (hours)
ML ML+Boost VEB sML sML+Boost sVEB

Dataset 1 34 18 2.5 96 48 4

Dataset 2 7.5 4.25 0.4 10.5 8 0.6

n length of training sequence

cl number of labeled training sequences

cu number of unlabeled training sequences

s number of states

D, Db dimension of observations

Table 4: Training time for the different algorithms.

5 Conclusion

We presented sVEB, a new semi-supervised training method for CRFs, that can simultaneously
select discriminative features via modified LogitBoost and utilize unlabeled data via minimum-
entropy regularization. Our experimental results demonstrate the sVEB significantly outperforms
other training techniques in real-world activity recognition problems. The unified framework for
feature selection and semi-supervised training presented in this paper reduces the computational and
human labeling costs, which are often the major bottlenecks in building large classification systems.

References

[1] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting
and labeling sequence data. In Proc. of the International Conference on Machine Learning (ICML), 2001.

2
The experiments were run in Matlab environment and as a result they took longer.

7

[2] Andrew McCallum. Efficiently inducing features or conditional random fields. In Proc. of the Conference
on Uncertainty in Artificial Intelligence (UAI), 2003.

[3] T. Dietterich, A. Ashenfelter, and Y. Bulatov. Training conditional random fields via gradient tree boost-
ing. In Proc. of the International Conference on Machine Learning (ICML), 2004.

[4] A. Torralba, K. P. Murphy, and W. T. Freeman. Contextual models for object detection using boosted
random fields. In Advances in Neural Information Processing Systems (NIPS), 2004.

[5] L. Liao, T. Choudhury, D. Fox, and H Kautz. Training conditional random fields using virtual evidence
boosting. In Proc. of the International Joint Conference on Artificial Intelligence (IJCAI), 2007.

[6] K. Nigam, A. McCallum, A. Thrun, and T. Mitchell. Text classification from labeled and unlabeled
documents using em. Machine learning, 2000.

[7] A. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using gaussian fields and harmonic
functions. In Proc. of the International Conference on Machine Learning (ICML), 2003.

[8] W. Li and M. Andrew. Semi-supervised sequence modeling with syntactic topic models. In Proc. of the
National Conference on Artificial Intelligence (AAAI), 2005.

[9] Y. Grandvalet and Y. Bengio. Semi-supervised learning by entropy minimization. In Advances in Neural
Information Processing Systems (NIPS), 2004.

[10] F. Jiao, W. Wang, C. H. Lee, R. Greiner, and D. Schuurmans. Semi-supervised conditional random
fields for improved sequence segmentation and labeling. In International Committee on Computational
Linguistics and the Association for Computational Linguistics, 2006.

[11] C. Lee, S. Wang, F. Jiao, Schuurmans D., and R. Greiner. Learning to Model Spatial Dependency: Semi-
Supervised Discriminative Random Fields. In NIPS, 2006.

[12] J.S. Yedidia, W.T. Freeman, and Y. Weiss. Constructing free-energy approximations and generalized
belief propagation algorithms. IEEE Transactions on Information Theory, 51(7):2282–2312, 2005.

[13] Y. Weiss. Comparing mean field method and belief propagation for approximate inference in mrfs. 2001.

[14] J. Besag. Statistical analysis of non-lattice data. The Statistician, 24, 1975.

[15] C. J. Geyer and E. A. Thompson. Constrained Monte Carlo Maximum Likelihood for dependent data.
Journal of Royal Statistical Society, 1992.

[16] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regression: a statistical view of
boosting. The Annals of Statistics, 38(2):337–374, 2000.

[17] G. Mann and A. McCullum. Efficient computation of entropy gradient for semi-supervised conditional
random fields. In Human Language Technologies, 2007.

6 Appendix

In this section, we show how we derived the equations for wi and zi (eq. 8):

LF = LsV EB = LV EB − αHemp =
NP

i=1

log p(yi|vei) + α
MP

i=N+1

P
y′

i

p(y′
i|vei) log p(y′

i|vei)

As in LogitBoost, the likelihood function LF is maximized by learning an ensemble of weak learners. We start
with an empty ensemble F = 0 and iteratively add the next best weak learner, ft, by computing the Newton
update s

H
, where s and H are the first and second derivative respectively of LF with respect to f(vei, yi).

F (vei, yi)) ← F (vei, yi) −
s
H

, where s =
∂LF+f

∂f
|f=0 and H =

∂2LF+f

∂f2 |f=0

s =
NP

i=1

2(2yi − 1)(1 − p(yi|vei)) + α
MP

i=N+1

P
y′

i

[2(2y′
i − 1)(1 − p(y′

i|vei))p(y′
i|vei)(1 − log p(y′

i|vei))]

H = −
NP

i=1

4p(yi|vei)(1 − p(yi|vei))(2yi − 1)2 + α2
MP

i=N+1

P
y′

i

4(2y′
i − 1)2(1 − p(y′

i|vei))[p(y′
i|vei)(1 −

p(y′
i|vei)) + log p(y′

i|vei)]

F ← F+

NP
i=1

ziwi+
MP

i=N+1

P
y′

i

ziwi

NP
i=1

wi+
MP

i=N+1

P
y′

i

wi

where zi =

(
yi−0.5

p(yi|vei)
if 1 ≤ i ≤ N eq. (4)

(y′

i−0.5)p(y′

i|vei)(1−log p(y′

i|vei))

α[p(y′

i
|vei)(1−p(y′

i
|vei))+log p(y′

i
|vei)]

if N < i ≤ M eq. (8)

and wi =

�
p(yi|vei)(1 − p(yi|vei)) if 1 ≤ i ≤ N eq. (4)

α2(1 − p(y′
i|vei))[p(y′

i|vei)(1 − p(y′
i|vei)) + log p(y′

i|vei)] if N < i ≤ M eq. (8)

At iteration t we get the best weak learner, ft, by solving the WLSE problem in eq. 7.

8

