
K.P. Fishkin et al. (Eds.): PERVASIVE 2006, LNCS 3968, pp. 1 – 16, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

A Practical Approach to Recognizing Physical Activities 

Jonathan Lester1, Tanzeem Choudhury2, and Gaetano Borriello2,3

1 Department of Electrical Engineering, University of Washington, Seattle, WA 98195, USA 
2 Intel Research Seattle, Seattle, WA 98105, USA 

3 Department of Computer Science, University of Washington, Seattle, WA 98195, USA 

Abstract. We are developing a personal activity recognition system that is 
practical, reliable, and can be incorporated into a variety of health-care related 
applications ranging from personal fitness to elder care. To make our system 
appealing and useful, we require it to have the following properties: (i) data 
only from a single body location needed, and it is not required to be from the 
same point for every user; (ii) should work out of the box across individuals, 
with personalization only enhancing its recognition abilities; and (iii) should be 
effective even with a cost-sensitive subset of the sensors and data features. In 
this paper, we present an approach to building a system that exhibits these 
properties and provide evidence based on data for 8 different activities collected 
from 12 different subjects. Our results indicate that the system has an accuracy 
rate of approximately 90% while meeting our requirements. We are now devel-
oping a fully embedded version of our system based on a cell-phone platform 
augmented with a Bluetooth-connected sensor board. 

1   Introduction 

The task of recognizing human activities from body worn sensors has received 
increasing attention in recent years. With a growing demand for activity recognition 
systems in the health care domain, especially in elder care support, long-term 
health/fitness monitoring, and assisting those with cognitive disorders [1, 2, 3]. For an 
automatic activity recognition system to be useable in these domains it is important 
for it to be practical as well as accurate.  

Current methods for tracking activities in the healthcare field are time and resource 
consuming manual tasks, relying on either paid observer (i.e. a job coach who 
periodically monitors a cognitively disabled person performing their job or a nurse 
monitoring an elderly patient) or on self-reporting, namely, having patients complete 
an activity report at the end of the day. However, these methods have significant 
deficiencies in cost, accuracy, scope, coverage, and obtrusiveness. Paid observers like 
job coaches and nurses must typically split their time among several patients at 
different locations, or the patients must be clustered together. Self-reporting is often 
inaccurate and of limited usefulness due to patient forgetfulness and both 
unintentional and intentional misreporting, such as a patient reporting more fitness 
activities than they actually completed.  

An automatic activity recognition system would not only help reduce the errors 
that arise from self-reporting and sparse observational sampling, but hopefully also 
improve the quality of care for patients as caregivers spend less of their time 
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performing bookkeeping duties. In addition, unobtrusive monitoring enables people to 
go about their daily lives in an unimpeded manner while providing their caregivers 
with a more accurate assessment of their real life activities rather than a small sample. 
While the full extent to which patients would benefit from such a device is not 
currently known, an accurate automated system does have a clear benefit over 
existing methods such as surveys in providing a continuous activity log along with 
times and durations for a wide range of activities.  

Moreover, if monitoring can be accomplished using a personal device that looks 
like any other common consumer device (rather than a device with many wires to all 
the limbs, for example) then there is less resistance to wearing it as it does not cause a 
social stigma that would identify a person’s ailment to others. Acceptability is further 
enhanced by the embodiment in a personal device over which the user has complete 
control, and may choose to share (or choose not to share) their data with health care 
professionals or choose to not wear the device (or turn it off) for some occasions. 

1.1   Related Work 

A majority of the research using wearable sensors for activity recognition has so far 
focused on using a single sensor modality, typically accelerometers, placed in two or 
more (up to 12) locations on the body [4, 5, 16]. Placing sensors in multiple pre-
defined locations or even a single, fixed, location every time can be quite 
cumbersome when one has to collect data on a daily and continuous basis. Work by 
[5] has showed that placing an accelerometer at only two locations (either the hip and 
wrist or thigh and wrist) did not affect activity recognition scores significantly (less 
than 5%) when compared to a system with five sensors; whereas the use of a single 
sensor reduced their average accuracy by 35%. In our recent work [7], we showed 
that we could compensate for the accuracy lost using a single sensing location by 
using a single sensing location with multiple sensor modalities (in this case 7 different 
sensor types).  

This is a promising line of investigation as it is much more comfortable for the user 
to wear a single device at only one location. Moreover, because we only need a single 
sensing location these sensors could be incorporated into existing mobile platforms, 
such as cell phones or wristwatches. Integrating sensors into devices people already 
carry is likely to be more appealing to users and garner greater user acceptance as 
these consumer devices do not make them look “different”. Greater user acceptance 
would hopefully also mean that users would be more inclined to wear the device more 
often and for a larger part of the day, allowing it to capture a greater range of 
activities than a device worn only sparingly.  

1.2   Our Hypotheses 

In this paper, we investigate several practical aspects of creating an automatic, 
personal activity recognition system. More specifically, there are three aspects we 
want to understand in more detail: location sensitivity, variations across users, and the 
required sensor modalities. Through our experiments, we seek to answer the 
following questions: 
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• Does it matter where on their person the user carries the device?  If we have 
training examples that contain data from multiple body locations, will the 
recognition algorithm generalize such that we do not have to learn location 
specific models? 

• How much variation is there across users?  Does the device need to be 
customized to each individual for reliable accuracy or can it be trained more 
generally so that it works “out-of-the-box”? 

• How many sensors are really needed to recognize a significant set of basic 
activities?  Are 7 really necessary or can a cheaper, lower-power system be 
built from fewer sensors but still have similar recognition accuracy?  

The remainder of the paper presents answers to these questions by providing 
evidence based on data collected from 12 different individuals performing 8 different 
activities over several days, carrying a collection of sensors worn in three different 
locations on the body.  The activities include: sitting, standing, walking, walking 
up/down stairs, riding elevator up/down, and brushing teeth. These activities were 
selected because they correspond to basic and common human movements and will 
be useful for elder care and personal fitness applications. These physical tasks are also 
similar to the tasks previous activity recognition systems have attempted to recognize.  

The three locations where volunteers wore the sensors correspond to locations 
where people already carry devices – (i) wrist (e.g., wristwatch), (ii) waist (e.g., cell 
phone or pager clip), and (iii) shoulder (e.g., cell phone pouch on a bag’s strap). Data 
was collected from these three locations simultaneously by using a wired set of three 
sensor boards, one at each location. However, we currently have a wireless 
implementation that sends data from a single sensing unit via Bluetooth to any 
commodity Bluetooth device, like a cell phone. In the future, we expect that the 
sensors will be part of the cell phone itself and the challenge lies in implementing all 
of our classification algorithms on that platform. Wristwatch type platforms (e.g. 
Microsoft SPOT) are also becoming more capable but are likely to only provide a 
glanceable user interface rather than a capable computational resource in the short to 
medium-term future. 

To accurately track various activities using a single wearable unit, we use the 
activity classification algorithm we developed in [7]. This algorithm employs an 
ensemble of very simple static classifiers to select the most useful features and then 
uses those features to recognize a set of basic human movements (walking, sitting, 
going down stairs, etc.). Each simple static classifier in the ensemble operates on a 
single feature, giving the system the flexibility to use a varying number of features. A 
second layer of hidden Markov models (HMMs) combines the outputs of the 
classifiers into an estimate of the most likely activity while providing temporal 
smoothing.  

The results presented in this paper show that the classification algorithms are 
robust to the realistic variations that appear in the data. Furthermore, they are well 
behaved with respect to different locations, different people, and a smaller set of 
sensors. Of course, further testing across a larger population is still needed to fully 
understand the limits of this approach. This paper makes the case that the approach is 
worth investigating further and meets many of the practicality requirements of the real 
world.  
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In the following sections we will describe in more detail the multi-modal sensor 
platform we use, the machine learning algorithms for robustly inferring activities, and 
our experimental methodology and results. We will conclude with a summary of our 
contributions and directions for future work. 

2 Experimental Methodology 

To gather data simultaneously from a large set of sensors and to better understand the 
usefulness of different sensor modalities in inferring human activities, we used the 
multi-modal sensor board (MSB) (shown in Figure 1). The MSB is designed to attach 
to the Intel Mote (iMote, also shown in Figure 1), a Bluetooth/32-bit ARM7-based 
wireless sensor node, but can also communicate with handheld, desktop computers, 
and cell phones via Bluetooth, serial, or USB. The iMote allows us to send the MSB’s 
sensing data to any commodity Bluetooth device like a cell phone1 and our other 
interfaces allow us to connect to handhelds, laptops, and other devices.  

   

Fig. 1. The multimodal sensor board (top), a Bluetooth iMote (lower left), and USB rechargeable 
battery board (lower right). A Nokia 6600 series phone with a sensor board on the back for scale 
(middle image). The data collection setup consisted of three sensor boards and a small Vaio 
Notebook for data logging (inside the pouch on the user’s right side).  

The sensor board contains seven different sensors and is capable of sampling them 
all simultaneously at fairly high sampling rates (see Table 1). The sensors on the MSB 
were selected for their general usefulness (as evidenced by related work in activity 
inference [6, 8, 9]), small footprint, low power consumption, and availability of 
digital interfaces. Sensors such as those used on the MSB are already being 
incorporated into cell phones and similarly equipped wristwatches are likely to follow 
soon [10].  

The MSB is small and light enough (9.2g) to wear comfortably for long periods of 
time. Even with an iMote (5.7g) and battery board (9.6g including a 200mAh battery), 
it only weighs 25g. While streaming data to the cell phone the iMote+MSB can run 
 

                                                           
1 Due to the limitations of Bluetooth and cell phones we can only transmit audio data at 8kHz 

all other sensor can function at their normal rates. 
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Table 1. Sensors on the multi-sensor board and the sampling rates used for the experiments in 
this paper 

Manufacturer Part No. Description Sampling Rate
Panasonic WM-61A Electric Microphone ~ 16000 Hz
Osram SFH-3410 Visible Light Phototransistor ~ 550 Hz
STMicro LIS3L02DS 3-Axis Digital Accelerometer ~ 550 Hz
Honeywell HMC6352 2-Axis Digital Compass 30 Hz
Intersema MS5534AP Digital Barometer / Temperature 15 Hz
TAOS TSL2550 Digital Ambient (IR and Visible+IR) Light 5 Hz
Sensirion SHT15 Digtial Humidity / Temperature 2 Hz

for approximately 4 hours on a single 200mAh Li-Polymer battery. The battery board 
can also use one or two 1800mAh Li-Ion batteries allowing for a runtime of more 
than 36 hours (72 hours with two batteries).  

2.1 Data Collection from Multiple MSBs 

As the basis for this and future research we have created a multi-person dataset from 
12 individuals (two female ten male) containing 8 basic physical activities. Eight of 
the volunteers in the study were graduate students in their mid 20s and four were 
older in their 30s. Two-thirds of the data was collected from a computer science 
building and the other third was collected in an office building. Volunteers collected 
data wearing three MSBs: one on a shoulder strap, one on the side of their waist, and 
one on their right wrist. The volunteers were given a sequence of activities to 
perform, like sitting on a couch for a few minutes before walking upstairs to brush 
their teeth. A miniature notebook (a Sony Vaio U750 measuring 16.8cm× 6.6cm 
× 2.5cm and weighing 560g) was carried in a small pouch to collect the data from the 
three MSBs and an observer annotated the data in real time by using a simple 
annotation program on an iPAQ. The observer also provided cues to the volunteers 
about the sequence of activities they should be performing. Figure 1 shows a picture 
of the setup the volunteers wore while collecting their data. And Table 2 lists the 
activities collected from this experiment along with the amount of data recorded and 
the number of times a label appeared in our annotations.  

Table 2. Data collected for the second data set, consisting of 8 basic activities collected by 12 
volunteers. A total of 12 hours of data was recorded, 7 hours of which was labeled as 
corresponding to any one of our set of 8 activities. 

Instances
Sitting 56 mins 22
Standing 1 hr 13 mins 135
Walking 1 hr 43 mins 215
Walking up stairs 19 mins 34
Walking down stairs 14 mins 30
Riding elevator down 16 mins 42
Riding elevator up 15 mins 39
Brushing Teeth 20 mins 12

Average Duration: 40 mins
Total Labeled Data: 6 hrs 55 mins

Duration

L
ab

el
ed

 A
ct

iv
it

ie
s



6 J. Lester, T. Choudhury, and G. Borriello 

Table 3. An example subset of some of the features calculated with descriptions. Note, that a 
single feature type, such as frequency bands, can have multiple outputs in the feature vector, i.e. 
one feature per band. 

Feature Description
Cepstral Coefficients The FFT of the log FFT spectrum, that is FFT(log(FFT(x)))
Log FFT Frequency Bands Real valued FFT values grouped into logarithmic bands
Spectral Entropy Measure of the distribution of frequency components
Energy The sum of the real FFT spectrum
Mean The average value of the time series
Variance The square of the standard deviation
Linear FFT Frequency Bands Real valued FFT values grouped into linear bands from 100Hz - 2kHz
Correlation Coeffs Correlation between axis pair, XY, XZ, YZ
Integration Integration of the timer series over a window

2.2 Ground Truth 

For our data set, ground truth was obtained while the experiments were being carried 
out. An observer carrying an iPaq marked the start and end points of the activities as 
the volunteer performed them by clicking on a set of labels on the iPaq. This on-line 
ground truth collection eliminated the need for the volunteers to annotate their data 
after they had completed the experiment and helped to reduce timing and annotation 
errors. If the user was performing an activity that wasn’t in our list of activity classes 
the segment was automatically marked as null/do-not care and was ignored when we 
trained and tested our classifiers. 

2.3 Classification Features 

As we collect approximately 18,000 samples of data per second we do not use the 
samples directly for classification, but instead we compute features to summarize the 
data, reduce the dimensionality of our data, and to bring out important details from 
the data. We currently compute a total of 651 features; which include linear and log-
scale FFT frequency coefficients, cepstral coefficients, spectral entropy, band-pass 
filter coefficients, correlations, integrals, means, and variances. Table 3 gives a 
description of the various types of features used – note that a feature type (e.g., linear 
FFT bands is based on FFT magnitudes grouped in linear bands) can account for 
multiple features in the feature vector. Also, we do not compute every type of feature 
for every sensor, e.g., an FFT is only computed for the audio, accelerometer and high 
frequency light sensors, as it does not make sense to compute it for the other sensors. 
We combine the features from various sensors to produce a 651 dimensional feature 
vector at 4Hz. Due to the fact that we have sensors with different sampling rates; 
there are multiple instances of some features within each 0.25 second window. 
Furthermore, when calculating some features (e.g., the integral features) we 
incorporate a longer time window that varies from several seconds to as long as a 
minute. For those features, we restrict the time windows to only use data from the 
past, so that our system functions without a time lag.  

It might be intuitively clear which features our algorithms should use for some 
activities (e.g., FFT coefficients of acceleration will likely capture walking gait); 
while for others it might not be as clear (e.g., for riding an elevator). Using all 651 
features might solve the feature selection problem; however, the disadvantage of this 
approach is that we might not have enough data to reliably learn all the parameters of 
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our models and some features might even confuse the classification algorithms rather 
than help discriminate between the various activity classes. In section 3, we briefly 
describe the algorithm developed in [7] that automatically picks the most useful 
features and learns classifiers from these.  

2.3 Classification  

To train our classifiers we needed to separate our data into training and testing sections. 
To do this we divided up our data set into a 4-folded test and training set by segments, 
or continuous blocks of data that were classified as the same activity. We randomly 
selected segments from our available data and placed them into our folds until we had 
about the same number of segments in each fold. We then train our static and HMM 
classifiers using 3 of the 4 folds and then test on the remaining fold (75% for training 
and 25% for testing), performing this same training/testing operation four times, using 
the different combinations of our 4 folds. Note that all the feature extraction, 
classification, and data analysis presented in this paper was performed offline.  

The static decision stumps classifiers we learned were all trained using our 651 
features computed at 4Hz. To prevent our classifier from over fitting to properties of 
the locations where our data was collected, we did not allow it to use the temperature 
or humidity sensors. These sensors should have very little to do with the actual 
recognition of the physical activities and could potentially cause the classifier to 
report results that were good classifications; but, were influenced by the locations 
where the data was collected and not the actual activities. For example, if you 
collected a lot of data of a person sitting in a cool air conditioned room and then 
standing in a warm heated room. During the training phase the classifier would see 
temperature as being the most telling feature in determining whether you were sitting 
or standing, even though temperature clearly has no direct bearing on whether one is 
sitting or standing. Of course, in the real data similar effects may be more subtle, 
nonetheless to avoid any obvious problems temperature and humidity are not used as 
sensor inputs for our activity recognition.  

The HMM classifier was trained using the margin output of the decision stumps 
classifier (calculated at 4Hz) and uses a 15 second sliding classification window with 
a 5 second overlap between windows (a 10 second window advancement).  

3   Learning Activity Models 

The two principal approaches used for classification in machine learning are: (i) 
generative techniques that model the underlying distributions of the data classes and 
(ii) discriminative techniques that only focus on learning the class boundaries [11]. 
Both of these approaches have been used extensively in the vision and wearable-
sensing communities for recognizing various human behavior and activities. In [7], 
we developed a hybrid approach that combines the two techniques and demonstrated 
it to be quite effective. We only provide a brief summary of the techniques here, 
readers are referred to [7] for more details.  

First, a modified version of AdaBoost proposed by [12], was used to automatically 
select the best features and rank them based on their classification performance. 
Given the maximum number of features the activity recognition system can use, the 
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system automatically chooses the most discriminative sub-set of features and uses 
them to learn an ensemble of discriminative static classifiers for the activities that 
need to be recognized. As the features are selected incrementally based on their 
usefulness, desirable classifier performance was achieved while using less than 10% 
of the possible features (i.e., the top 50 features).  Including additional features 
beyond the top 50 had very little impact on the classification performance. On 
average using classifiers with 600 features improves training error by less than 1% 
compared to classifiers with 50 features.  

Second, the class probabilities estimated from the static classifiers are used as 
inputs into hidden Markov models (HMMs). The discriminative classifiers are tuned 
to make different activities more distinguishable from each other, while the HMM 
layer on top of the static classification stage ensures temporal smoothness and allows 
for continuous tracking of the activities. Using HMMs to recognize activities in 
continuous time chunks has the following advantages: (i) the classification output will 
incorporate history information to smooth out much of the sporadic errors that occur 
during the static classification step and (ii) we can learn how people transition 
between activities and thereby more about people’s composite activity routines. 

4   Location Sensitivity 

In [7], we colleted a large data set of about 30 hours2 of data from two volunteers 
wearing a MSB on their shoulder performing various activities. From this data set, 
features and classifiers were developed that could robustly detect 10 activities with 
greater than 90% accuracy: sitting, standing, walking, jogging, walking up/down 
stairs, riding a bicycle, driving a car, and riding an elevator up/down.  This larger 
dataset served to verify that the algorithms would work on a variety of data using a 
single multi-modal sensor placement trained with a large amount of data. In this paper 
we build on this result. It should be noted that even though the results in this paper are 
slightly lower than those in [7], we would expect that with more training data from 
each individual we would approach the results in [7]. 

Previous methods have shown that by using sensors placed on different parts of the 
body one can classify activities fairly well. However, the problem with multiple 
sensor placements is of course that they can be quite obtrusive; but, similarly a single 
sensor placement can also be obtrusive (although to a lesser extent) if the user is 
required to carry it in the same location all of the time. Ideally, we would like the 
classification algorithms to work accurately with data from different locations on the 
body. This would allow the user to carry the device in a location that is the most 
convenient for a given context. For example, although a majority of men do not object 
to wearing devices on their waist belts, it is not always practical to do so; and women 
often do not wear a belt.  

To determine the role sensor placement in recognition accuracy, we trained four 
sets of classifiers using data from the three locations (i) trained using data from all 
three locations, (ii) trained using data from the shoulder, (iii) trained with data from 
the waist, and (iv) trained with data from the wrist.  

2 We collected approximately 30 hours of data; however, due to memory limitations we could 
only train our classifiers using approximately 12 hours of this dataset. 
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Note that the first classifier (using data from all three locations) does not combine 
all the locations together and require the user to simultaneously wear three sensors. 
Instead it treats each location as a separate input; so that when a user wears a single 
sensing device, they may wear this device at any of the three locations and use this 
classifier to classify that data. Table 4, shows the confusion matrix for this more 
location-independent first classifier and Table 5 lists the overall precision and recall3

for each of our four classifiers (note that since the HMM uses the output of the static 
classifier as input, it is the final classification and the static classifier is only an 
intermediate stage – we show both to highlight the effect of the combining the two 
methods).

As we can see from Tables 4 and 5 the more generic classifier trained on data from 
all three locations does quite well over all. The classifiers trained for specific 
locations achieve slightly higher overall precision and recall scores. As mentioned in 
section 3, the algorithm uses the training data to select the most discriminative subset 
of features. So the first classifier (which uses training data from all three locations) 
succeeds in finding features that are common to the data from all three locations and 
builds classifiers that work reliably on data from all three locations.  

These results show that it is possible to train a generalized classifier that can 
recognize our 8 activities when worn in any of the three locations and that if we train 
for a specific location we can achieve slightly higher classification results. In addition 
it is also possible for us to train several classifiers (i.e., a generic one and more 
location-specific ones) and determine the most appropriate classifier to use at runtime. 
There are some existing techniques that have shown promise in determining where a 
device is being carried on the body [6] and using the output from these techniques we 
could select location specific classifiers to boost our accuracy when the device is 
carried in a well-characterized location.  

While the locations here do not represent all the possible locations where one could 
carry the sensing device they do cover the most common ones where people carry 
existing devices. It is also unlikely that subtle variations in the actual locations will 
change the classification significantly.  Intuitively, there should be much larger differ-
ences between the waist and the wrist than there would be between the waist and a 
pocket. When we take our location specific classifiers and test them on data from 
another location (for example when classifiers are trained on the shoulder and tested 
on data from the waist), we suffer a 20% reduction in precision/recall. And when 
trained on data from the shoulder and waist and tested on data from the wrist there is 
about a 10-15% reduction in precision/recall. 

3 Overall precision and recall are calculating by normalizing the confusion matrix so that each 
labeled class has the same number of examples (i.e. all rows sum to 1).  

 Precision is defined as the proportion of the data labeled as activity N that actually was from 
data labeled as activity N in the ground truth: 

  True Positive / (True Positive + False Positive) 
 While recall is defined as the proportion of the data originally labeled as activity N that was 

correctly classified as activity N: 
  True Positive / (True Positive + False Negative) 
   Overall accuracy is defined as:  
  True Positive + True Negative / Total Number of Examples 

 Where the True Negative and False Positive counts are normalized by dividing by the 
(number of classes – 1)  



10 J. Lester, T. Choudhury, and G. Borriello 

Table 4. Confusion matrix for the static and HMM classifier trained using a single stream of 
sensor data from all three locations on the body 

Sitting Standing Walking
Walking 
up stairs

Walking 
down 
stairs

Riding 
elevator 

down

Riding 
elevator up

Brushing 
Teeth

Sitting 19245 17941 501 82 39 30 34 267
Standing 6118 37602 3154 245 87 520 331 747
Walking 998 7280 57658 1965 1907 771 666 1004
Walking up stairs 1 297 1481 11277 35 23 188 39
Walking down stairs 7 139 1422 59 7959 294 1 28
Riding elevator down 68 2326 328 9 451 8023 214 11
Riding elevator up 24 1936 332 267 4 332 7817 31
Brushing Teeth 231 5252 1052 65 50 20 21 7859

Sitting Standing Walking
Walking 
up stairs

Walking 
down 
stairs

Riding 
elevator 

down

Riding 
elevator up

Brushing 
Teeth

Sitting 28526 9173 404 0 0 0 0 36
Standing 14308 26956 2791 261 204 2106 1241 937
Walking 2933 4719 57278 2195 2770 941 766 647
Walking up stairs 0 71 467 12632 10 29 132 0
Walking down stairs 20 110 728 42 8821 188 0 0
Riding elevator down 0 189 156 0 936 9992 157 0
Riding elevator up 0 194 221 648 0 295 9385 0
Brushing Teeth 252 1523 399 0 0 0 65 12311

Static+HMM Classifier 
Confusion Matrix

Static Classifier 
Confusion Matrix

Recognized Activity
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Table 5. Overall precision/recall for the static and HMM classifiers trained/tested on all 
locations (top row) and a single location (bottom rows). The classifier trained on all three 
locations does not combine all three sensing positions to perform its classification; rather it is a 
generalized classifier, using a single sensor placement, which works at all three locations. The 
overall accuracies for all cases were approximately 90%. 

Overall 
Precision

Overall 
Recall

Overall 
Precision

Overall 
Recall

Trained on Location 1,2,3
Tested on Location 1,2,3

(all locations) 
(all locations) 79.18% 71.14% 82.07% 81.55%

Trained on Location 1
Tested on Location 1

(shoulder) 
(shoulder) 79.37% 71.26% 83.84% 82.64%

Trained on Location 2
Tested on Location 2

(waist)      
(waist) 81.83% 77.05% 85.87% 84.85%

Trained on Location 3
Tested on Location 3

(wrist)       
(wrist) 81.01% 68.66% 87.18% 87.05%

Single Location Average: 80.74% 72.32% 85.63% 84.85%

Static Classifier HMM Classifier 

5   Variation Across Users 

An important practical issue with any device based on statistical inference is whether 
it can be useful immediately to the end user or whether it has to go through a training 
period. Clearly most users will want any device to work immediately upon purchase. 
If it gets better over time, that is a plus, but it must perform reasonably out of the box. 
Ideally, we would want to collect a lot of training data from a large diverse group of 
individuals to train a generic classifier, and then apply this classifier to classify a new 
individual’s data without having to collect any new training data or retrain the 
classifier. 
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To test how well our classifiers could handle the variations that exist across 
different users we created several combinations of the 12 individuals’ data on which 
to train. These combinations were created by randomly selecting N individuals’ data 
for training, where we varied N = 1 (training data from one individual) to N = 12 
(training data from all of our 12 test subjects). For each combination we performed 
four folded cross validation where we used 75% of our data to train with and 25% to 
test. The data used for this experiment uses data from the shoulder location only, so 
we would expect similar results to those we saw in row two of Table 5. 

We measured the performance of our classifiers under two test conditions: (i) in the 
first case we tested on data from all 12 individuals but trained on data from [1, … ,N] 
individuals (ii) in the second case we tested on data from individuals who had not been 
in the training set, i.e. if we trained on individuals [1,…,N] we would test on data from 
individuals [N+1, … , 12]. 

The objective of the first test case was to determine if training on an increasingly 
larger subset would improve recognition accuracy. We would expect that each 
additional individual we add to our training data would improve our recognition 
accuracy. The objective of the second test case is to ensure that any improvement in 
recognition accuracy comes solely from the classifier being more “generalized” and 
not because data from an increased fraction of individuals is used during training as in 
the first test case. 

Figure 2 shows the overall precision and recall for the first test where we add in more 
and more people into the training set while always testing on all the test data from 

Fig. 2. The overall precision and recall graphs for the static and static+HMM classifier. As we 
add in more individuals to our training set the precision and recall increase. The classifiers 
trained at each point were tested on test data from all 12 volunteers. E.g. data point [1-10] 
corresponds to training on 10 individuals and testing on the test data from all 12. The overall 
accuracy for this test case reaches approximately 95%.  
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the 12 individuals. As we can see from Figure 2 the overall precision and recall 
increase as we add more and more individuals into our training set, eventually 
reaching about 84%. The [1-12] data point Figure 2 also corresponds very closely to 
the results we saw in row two of Table 5 as they both represent very similar tests. 

Figure 3 shows the overall precision and recall for the second test case where we 
again add more and more people into the training set but test using test data from 
people who were not in our training set. And again we see an increase in overall 
precision and recall, eventually reaching around 80%. As figures 2 and 3 indicate, the 
more people we include in our training data the better our classifiers perform and that 
they are able to operate on a diverse set of individuals. In practice, manufacturers of 
an activity recognition system should be able to pre-train a set of classifiers so the 
device will work well for most users right away. 

As you may have noticed in [7] we achieved ~90% accuracy for our classifiers and 
here we’re only obtaining about 80-84%. The reason for this difference is that the data 
used in [7] contains a large amount of data (~30 hours) from two individuals over a 
period of six weeks, whereas the data set here contains a total of 6 hours of data from 
12 individuals. We would expect that with more data these results would approach 
those in [7]. 

Fig. 3. The overall precision and recall graphs for the static and static+HMM classifier. As we 
add in more individuals to our training set the precision and recall increase. The classifiers 
trained at each point were tested on test data from individuals who were not in the training data. 
E.g. data point [1-10] corresponds to training on 10 individuals and testing on the test data from 
the other two (of our 12) individuals who were not in the training dataset. The overall accuracy 
reaches approximately 87%. 
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6   Sensors Necessary for Classification  

While all the sensors on the MSB platform are interesting and provide some useful 
information, we do not necessarily need all the sensors to perform accurate classifi-
cation. In fact, the results presented here and in [7] discarded information from the 
temperature and humidity sensors, simply because the classifiers would often 
incorrectly choose them as being indicators of when a physical activity was perfor-
med (sitting and standing shouldn’t be strongly correlated to the temperature).  

In addition, sensors such as light can often be obscured because the device is being 
carried in a pocket or obscured by clothing. By examining the features selected by the 
classifier we can see that the three most important sensors for the classifiers are the 
accelerometer, audio, and barometric pressure sensors.  These correspond to basic 
motion of the user (acceleration) and the changing properties of their environment 
(sound profile and altitude).  Table 6 contains the results of re-training the four 
classifiers (as described in section 4) using only the accelerometer. As we can see, 
using a single modality, even though it is the most important one, causes a rather large 
decline in precision/recall for all the different locations. However, if we include 
accelerometer, audio, and barometric pressure sensors (as in Table 7) we obtain 
precision/recall numbers that are very comparable to the results using more of the 
sensors shown in Figures 2 and 3. 
Reducing the number of sensors not only makes the system less susceptible to 
environmental changes but also enables us to make more practical devices. As we add 
more and more sensors to our device the system complexity, computational/power 
requirements, and cost increase. Reducing the number of sensors also reduces the size 
requirements for incorporating these sensors into a mobile platform, such as a cell 
phone. Many cell phone manufacturers are starting to add accelerometers to their 
devices to enable games, interfaces, and basic pedometer functionality, and they already 
contain an audio sensor. The barometric pressure sensor is typically found in GPS units, 
where it is used to adjust altitude calculations. However, given the usefulness in 
localization tasks, they could easily become a common feature of cell phones.  

Table 6. Summary statistics for the static and HMM classifiers trained/tested on all locations 
(top row) and a single location (bottom rows). The classifiers trained here only used a single 
sensor, the accelerometer. The overall accuracies here were all approximately 65%. 

Overall 
Precision

Overall 
Recall

Overall 
Precision

Overall 
Recall

Trained on Location 1,2,3
Tested on Location 1,2,3

(all locations) 
(all locations) 40.49% 32.63% 41.15% 38.96%

Trained on Location 1
Tested on Location 1

(shoulder) 
(shoulder) 41.12% 36.15% 45.78% 42.46%

Trained on Location 2
Tested on Location 2

(waist)      
(waist) 39.61% 33.67% 38.67% 38.30%

Trained on Location 3
Tested on Location 3

(wrist)       
(wrist) 39.58% 34.41% 45.81% 45.10%

Single Location Average: 40.10% 34.74% 43.42% 41.95%

Static Classifier HMM Classifier 
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Table 7. Summary statistics for the static and HMM classifiers trained/tested on all locations 
(top row) and a single location (bottom rows). The classifiers trained here use three sensors: the 
accelerometer, audio, and barometric pressure. The overall accuracies here were all 
approximately 90%. 

Overall 
Precision

Overall 
Recall

Overall 
Precision

Overall 
Recall

Trained on Location 1,2,3
Tested on Location 1,2,3

(all locations) 
(all locations) 75.53% 68.45% 81.97% 81.38%

Trained on Location 1
Tested on Location 1

(shoulder) 
(shoulder) 76.26% 69.48% 83.52% 82.49%

Trained on Location 2
Tested on Location 2

(waist)      
(waist) 78.29% 73.88% 85.50% 84.60%

Trained on Location 3
Tested on Location 3

(wrist)       
(wrist) 76.44% 56.33% 85.94% 85.76%

Single Location Average: 77.00% 66.56% 84.99% 84.28%

Static Classifier HMM Classifier 

7 Conclusion 

The work presented here further demonstrates that accurate recognition of a range of 
physical activities can be achieved by a light-weight and unobtrusive multi-modal 
wearable device. The experimental results presented in sections 4, 5, and 6 
demonstrate the promise of this approach.   Specifically, our contribution is that the 
activity recognition approach is accurate even under practical considerations such as 
where the device is worn, that it can be pre-trained by other individuals, and that we 
can use fewer and cheaper sensors.  We have answered the three questions we posed 
in the beginning: 

(i) Our single-board activity recognition system generalizes well and we do not 
need to learn location-specific activity models. As long as we have training 
data from the different locations we expect to carry the sensing device, the 
algorithm can pick the right subset of discriminatory features that will work 
for all those locations (as in [6]).  

(ii) For our dataset, we do not require customization to specific individuals and 
the system works reliably when tested on data from a novel individual. 
However, we need activities collected over longer periods of time and over 
people of differing ages, body types, and in more varied settings to get a 
better understanding of how broadly this result will hold.   

(iii) Although our sensor-board was equipped with seven different modalities, we 
found that three modalities in particular yielded the most discriminative 
information for our activities: the audio, barometric pressure, and accelero-
meter sensors. These three modalities provide complementary information 
about the environment and the wearer. The audio captures the sounds 
produced during the various activities, whereas the accelerometers data is 
sensitive to the movement of the body, and the barometric pressure provides 
important movement queues, such as detecting the activity of riding in an 
elevator or moving up and down stairs. 
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Some important things to keep in mind about the results are that the 12 individuals 
in this paper were all young healthy individuals, so while the results can generalize to 
wider populations they do not necessarily cover all possible groups, like elderly 
patients or people with health impairments.  In addition, of the 12 hours of data we 
collected, only 7 hours of it was labeled as belonging to our 8 classes; which raises an 
interesting problem of how to handle activities that don’t quite fall into our labeled 
activities. We could add an ‘other’ class to handle these activities; however, to handle 
ambiguities associated with compound activities like ‘sitting’ and ‘driving a car’ we 
would need to create a hierarchy of activities. This would allow us to recognize an 
activity like ‘driving a car’ as both ‘driving a car’ and ‘sitting’ and more gracefully 
handle unrecognized activities. 

The fact that a small, single sensor device can classify activities reliably opens the 
doors to several lines of further exploration. We are currently working on an 
embedded version of our system that incorporates the sensing and the feature 
processing on a cell-phone like platform. Embedding the device in such widespread 
consumer electronics would make such computing truly ubiquitous. We believe the 
most promising potential applications of such activity recognition systems are in 
health-care and health maintenance. For many years, a successful and often life-
saving device for the elderly has been a simple "help button" that can be used to 
initiate a phone call after a disabling fall. For health maintenance and personal fitness, 
commercially available devices like pedometers are also gaining popularity, but they 
often lack the subtlety or range of activities performed throughout the day. For 
example, a pedometer displays the same step count for steps taken on a flat surface as 
it does for steps walked up the stairs, despite the fact that walking upstairs takes much 
more effort.  The fact that such a simple devices can still be beneficial gives a glimpse 
of the potentially vast health-care benefits that wireless, unobtrusive activity-
recognizing sensors could bring about.  
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