
Imrovements to Platt's SMO Algorithm for SVMClassi�er Design1

S.S. Keerthi S.K. Shevade C. Bhattaharyya & K.R.K. Murthyssk�guppy.mpe.nus.edu.sg shirish�sa.iis.ernet.in bhiru�sa.iis.ernet.in murthy�sa.iis.ernet.inTehnial Report CD-99-14

Control DivisionDept. of Mehanial and Prodution EngineeringNational University of SingaporeSingapore-119260Ph: (65)-874-4684
1A revised version of this report is under preparation for submission to a journal. We welome any omments andsuggestions for improving this report.

AbstratThis paper points out an important soure of onfusion and ineÆieny in Platt's SequentialMinimal Optimization (SMO) algorithm that is aused by the use of a single threshold value.Using lues from the KKT onditions for the dual problem, two threshold parameters are em-ployed to derive modi�ations of SMO. These modi�ed algorithms perform signi�antly fasterthan the original SMO on all benhmark datasets tried.1 IntrodutionIn the past few years, there has been a lot of exitement and interest in Support Vetor Mahines[16,2℄ beause they have yielded exellent generalization performane on a wide range of problems.Reently, fast iterative algorithms that are also easy to implement have been suggested[9,4,7,3,6℄.Platt's Sequential Minimization Algorithm (SMO)[9,11℄ is an important example. A remarkablefeature of SMO is that it is also extremely easy to implement. Comparative testing against otheralgorithms, done by Platt, have shown that SMO is often muh faster and has better salingproperties.In this paper we enhane the value of SMO even further. In partiular, we point out animportant soure of onfusion and ineÆieny aused by the way SMO maintains and updates asingle threshold value. Getting lues from optimality riteria assoiated with the KKT onditionsfor the dual, we suggest the use of two threshold parameters and devise two modi�ed versions ofSMO that remove the onfusion assoiated with SMO and are muh more eÆient than the originalSMO. Computational omparison on a number of benhmark datasets shows that the modi�ationsperform signi�antly faster than the original SMO in most situations. The ideas mentioned in thispaper an also be applied to the SMO regression algorithm[13℄. We will report the results of thatextension in another paper[12℄.The paper is organized as follows. In setion 2 we briey disuss the SVM problem formulation,the dual problem and the assoiated KKT optimality onditions. We also point out how theseonditions lead to proper riteria for terminating algorithms for designing SVM lassi�ers. Setion3 gives a short summary of Platt's SMO algorithm. In setion 4 we point out the problem assoiatedwith the way SMO uses a single threshold value, and desribe the modi�ed algorithms in setion5. Computational omparison is done in setion 6. The appendix gives the pseudo-odes for our1

SMO modi�ations. These pseudo-odes are very similar to those for the SMO given by Platt in[9℄. They are short, and, it is very easy to develop a working ode for SVM design using them.2 The SVM Problem and Optimality Conditions.The basi problem addressed in this paper is the two ategory lassi�ation problem. The tutorialby Burges[2℄ gives a good overview of the solution of this problem using SVMs. Throughout thepaper we will use x to denote the input vetor of the support vetor mahine and z to denote thefeature spae vetor whih is related to x by a transformation, z = �(x). As in all SVM designs,we do not assume � to be known; all omputations will be done using only the kernel funtion,k(x; x̂) = �(x) � �(x̂), where \�" denotes inner produt in the z spae. Let f(xi; yi)g denote thetraining set, where xi is the i-th input pattern and yi is the orresponding target value; yi = 1means xi is in lass 1 and yi = �1 means xi is in lass 2. Let zi = �(xi). The optimization problemsolved by the support vetor mahine is:min 12kwk2 + CXi �i (1a)subjet to : yi(w � zi � b) � 1� �i 8 i; �i � 0 8 i (1b)This problem is referred to as the primal problem. The Lagrangian for this problem is:L = 12kwk2 + CXi �i +Xi �i[1� �i � yi(w � zi � b)℄�Xi �i�iThe KKT optimality onditions are given by:rwL = w �Xi �iyizi = 0; �L�b =Xi �iyi = 0; �L��i = C � �i � �i = 0 8i;�i � 0; �i[1� �i � yi(w � zi � b)℄ = 0; �i � 0; �i�i = 0 8i:We will refer to the �i's as Lagrange multipliers. Let us de�new(�) =Xi �iyiziUsing Wolfe duality theory[16,2℄ it an be shown that the �i's are obtained by solving the followingDual problem: maxW (�) =Xi �i � 12w(�) � w(�) (2a)2

subjet to 0 � �i � C; Xi �iyi = 0 (2b)One the �i's are obtained, the other primal variables, w, b, � and � an be easily determinedby using the KKT onditions mentioned earlier. It is possible that the solution is non-unique; forinstane, when all �is take the boundary values of 0 and C, it is possible that b is not unique.The numerial approah in SVM design is to solve the dual (instead of the primal) beause itis a �nite-dimensional optimization problem. (Note that w(�) � w(�) = PiPj yiyj�i�jk(xi; xj).)To derive proper stopping onditions for algorithms whih solve the dual, it is important to writedown the optimality onditions for the dual. The Lagrangian for the dual is:�L = 12w(�) � w(�)�Xi �i �Xi Æi�i +Xi �i(�i � C)� �Xi �iyiDe�ne Fi = w(�) � zi � yi =Xj �jyjk(xi; xj)� yiThe KKT onditions for the dual problem are:� �L��i = (Fi � �)yi � Æi + �i = 0; Æi � 0; Æi�i = 0; �i � 0; �i(�i � C) = 0 8 iThese onditions an be simpli�ed by onsidering three ases.Case 1. �i = 0 Æi � 0; �i = 0) (Fi � �)yi � 0 (3a)Case 2. 0 < �i < C Æi = 0; �i = 0) (Fi � �)yi = 0 (3b)Case 3. �i = C Æi = 0; �i � 0) (Fi � �)yi � 0 (3)De�ne the following index sets at a given �: I0 = fi : 0 < �i < Cg; I1 = fi : yi = 1; �i = 0g;I2 = fi : yi = �1; �i = Cg; I3 = fi : yi = 1; �i = Cg; and, I4 = fi : yi = �1; �i = 0g. Note thatthese index sets depend on �. The neessary onditions in (3a)-(3) an be rewritten as� � Fi 8 i 2 I0 [I1 [I2 ; � � Fi 8 i 2 I0 [I3 [I4 (4)De�ne: bup = minfFi : i 2 I0 [I1 [I2g and blow = maxfFi : i 2 I0 [I3 [I4g (5)3

Then optimality onditions will hold at some � i�blow � bup (6)It is easy to see the lose relationship between the threshold parameter b in the primal problemand the multiplier, �. In partiular, at optimality, � and b are idential. Therefore, in the rest ofthe paper � and b will denote one and the same quantity.We will say that an index pair (i; j) de�nes a violation at � if one of the following sets ofonditions holds: i 2 I0 [I3 [I4 ; j 2 I0 [I1 [I2 and Fi > Fj (7a)i 2 I0 [I1 [I2 ; j 2 I0 [I3 [I4 and Fi < Fj (7b)Note that optimality onditions will hold at � i� there does not exist any index pair (i; j) thatde�nes a violation.Sine, in numerial solution, it is usually not possible to ahieve optimality exatly, there is aneed to de�ne approximate optimality onditions. The ondition (6) an be replaed byblow � bup + 2� (8)where � is a positive tolerane parameter. (In the pseudo-odes given in [9℄ and the appendix ofthis paper, this parameter is referred to as tol.) Correspondingly, the de�nition of violation anbe altered by replaing (7a) and (7b) by:i 2 I0 [I3 [I4 ; j 2 I0 [I1 [I2 and Fi > Fj + 2� (9a)i 2 I0 [I1 [I2 ; j 2 I0 [I3 [I4 and Fi < Fj � 2� (9b)Hereafter in the paper, when optimality is mentioned it will mean approximate optimality.Sine � an be plaed halfway between blow and bup, approximate optimality onditions willhold i� there exists a � suh that (3a)-(3) are satis�ed with a � -margin, i.e.,(Fi � �)yi � �� if �i = 0 (10a)j(Fi � �)j � � if 0 < �i < C (10b)(Fi � �)yi � � if �i = C (10)4

(10a)-(10) are the approximate optimality onditions employed by Platt[9℄, Joahims[4℄ and others.In [6℄ we have argued the soundness of using the above approximate onditions as a stoppingriterion for dual algorithms.3 Platt's SMO Algorithm.A number of algorithms have been suggested for solving the dual problem. Traditional quadratiprogramming algorithms suh as the ative set method[5℄ and interior point algorithms[13℄ arenot suitable for large size problems beause of the following reasons. First, they require that thekernel matrix k(xi; xj) be omputed and stored in memory. This requires extremely large memory.Seond, these methods involve expensive matrix operations suh as the Cholesky deomposition ofa large submatrix of the kernel matrix. Third, for pratitioners who would like to develop theirown implementation of an SVM lassi�er, oding these algorithms is very diÆult.Several attempts have been made to develop methods that overome some or all of these prob-lems. Vapnik[15℄ made the observation that if the number of support vetors is small and theyare known beforehand, then one ould diretly solve the redued problem involving only the sup-port vetors and thereby deal with signi�antly larger datasets. Sine the support vetors are notknown, a beginning set of vetors is hosen and hunked into memory and the resulting problem issolved. Then the remaining vetors are tested for optimality and those that violate are inluded.The proess is repeated until a solution is obtained. This is referred to as the hunking algorithm.If the number of support vetors itself is large then the hunking algorithm is also unsuitable.Osuna et.al.[8℄ suggested the use of only a subset of the vetors as a working subset and optimizeon the orresponding �i's while freezing the others. Though the arguments given by Osuna et.al.about the onvergene of the algorithm are inorret, it is expeted that the algorithm will onvergeasymptotially as the number of steps goes to in�nity. Joahims[4℄ has developed an eÆientalgorithm for SVM by building upon the basi idea given in [8℄.Reently Platt suggested an algorithm[9℄ { Sequential Minimal Optimization (SMO) { that putsthe subset seletion in Osuna et.al's algorithm to the extreme by iteratively seleting subsets only ofsize 2. Note that, beause of the presene of the equality onstraint (see (2b)), at least two variablesneed to be hosen for optimization so as to take a step. Platt's omputational experiments[9,11℄5

have shown SMO to be very muh faster than the hunking algorithm; it also sales muh betteras problem size grows. The SMO algorithm also fares better than Joahim's algorithm[4℄.Let us give a brief desription of the SMO algorithm. Beause the working set is only ofsize 2 and the equality onstraint an be used to eliminate one of the two Lagrange multipliers,the optimization problem at eah step is a quadrati minimization in just one variable. It isstraightforward to write down an analyti solution for it. Complete details are derived in [9℄. Theproedure, takeStep (whih is a part of the pseudoode given there) gives a lear desription of theimplementation. There is no need to reall all details here. We only make one important ommenton the role of the threshold parameter, �. As in [9℄ de�ne the output error on the i-th pattern asEi = Fi � �Consistent with the pseudoode of [9℄ let us all the indies of the two multipliers hosen foroptimization in one step as i2 and i1. A look at the details in [9℄ shows that to take a step byvarying �i1 and �i2 , we only need to know Ei1 � Ei2 = Fi1 � Fi2 . Therefore a knowledge of thevalue of � is not needed to take a step.The method followed to hoose i1 and i2 at eah step is ruial for eÆient solution of theproblem. Based on a number of experiments Platt ame up with a good set of heuristis. Heemploys a two loop approah: the outer loop hooses i2; and, for a hosen i2, the inner loophooses i1. The outer loop iterates over all patterns violating the optimality onditions, �rst onlyover those with Lagrange multipliers neither on the upper nor lower boundary, and one all ofthem are satis�ed, over all patterns violating the optimality onditions to ensure that the problemhas indeed been solved. Clearly, the algorithm spends a large fration of its time adjusting themultipliers whih take non-boundary values and only a small amount of time with the multipliersthat take boundary values. Appropriately, therefore, Platt maintains and updates a ahe for Eivalues for indies i orresponding to non-boundary multipliers. The remaining Ei are omputed asand when needed.Let us now see how the SMO algorithm hooses i1. The aim is to make a large inrease in theobjetive funtion. Sine it is expensive to try out all possible hoies of i1 and hoose the one thatgives the best inrease in objetive funtion, the index i1 is hosen to maximize jEi2 �Ei1 j. (If wede�ne �(t) = W (�(t)) where t is a real parameter that denotes the hange in the values of yi1�i1and �yi2�i2 , and �(t) is the orresponding Lagrangian multiplier vetor, then j�0(0)j = jEi1�Ei2 j.)6

Sine Ei is available in ahe for non-boundary multiplier indies, only suh indies are initially usedin the above hoie of i1. If suh a hoie of i1 does not yield suÆient progress, then the followingsteps are taken. Starting from a randomly hosen index, all indies orresponding to non-boundmultipliers are tried as hoies for i1, one by one. If still suÆient progress is not possible, allindies are tried as hoies for i1, one by one, again starting from a randomly hosen index. Thusthe hoie of random seed a�ets the running time of SMO; see, for example, the omputationalosts mentioned in setion 5.Although a value of � is not needed to take a step, it is needed if (10a)-(10) are employed forheking optimality. In the SMO algorithm � is updated after eah step. If, after a step involving(i1; i2), one of �i1 , �i2 (or both) takes a non-boundary value then (3b) is exploited to update thevalue of �. In the rare ase that this does not happen, there exists a whole interval, say, [�low; �up℄,of admissible thresholds for �i1 and �i2 . In this situation SMO simply hooses: � = (�low+�up)=2.In the next setion we will see the problems aused by suh a hoie.4 Problems with SMO Algorithm.SMO is a arefully organized algorithm whih has exellent omputational eÆieny. However,beause of its way of omputing and using a single threshold value it an get into a onfused endstate and an also beome ineÆient. Let us illustrate the �rst issue using a numerial example.Example 1. Consider the following example where there are 3 patterns:y1 = �1; y2 = y3 = +1; C = 14 ; Kernel Matrix = 266664 1 0 00 1 20 2 6 377775Suppose we start from �1 = �2 = �3 = 0 (the usual point where SMO starts). Calulating Fiwe get F1 = 1, F2 = F3 = �1. All three indies violate the optimality onditions. (Note thatblow = 1 and bup = �1; SMO uses � = 0 to hek optimality onditions.) Suppose SMO hoosesindies 1 and 2 for optimization, keeping �3 �xed at 0. It is easy to hek that this leads to thepoint, �1 = �2 = C, �3 = 0. At this new point we have F1 = 3=4, F2 = �3=4, F3 = �1=2. Notethat blow = �3=4 and bup = �1=2 and hene optimality onditions are satis�ed. SMO hooses� = (F1 + F2)=2 = 0. If this value of � is used to hek optimality, the third training pattern7

shows a violation of the optimality riterion employed by Platt (i.e., (10)), but atually there isno violation! Note that any � hosen from the interval, [�3=4; �1=2℄ would have ensured theveri�ation of (10).This example learly sums up our �rst onern. Beause SMO onstrains itself unneessarilyto a partiular single hoie of the threshold, �, it gets into trouble, espeially at termination.The issue raised here appears to be somewhat pathologial sine the presene of even a singleindex i with 0 < �i < C fores � to be unique and so there is really no serious problem. (Notethat unless C takes ertain extreme values, there is little possibility of not having an index i with0 < �i < C.) But we would like to point out that there is still a pratial problem of ineÆieny.At any instant, the SMO algorithm �xes � based on the urrent two indies whih are beingoptimized. However, while heking whether the remaining examples violate optimality or not, itis quite possible that a di�erent, shifted hoie of � may do a better job. So, in the SMO algorithmit is quite possible that, even though � has reahed a value where optimality is satis�ed (i.e., (8)),SMO hasn't deteted this beause it has not identi�ed the orret hoie of �. It is also quitepossible that, a partiular index may appear to violate the optimality onditions beause (10) isemployed using an \inorret" value of � although this index may not be able to pair with anotherto de�ne a violation. In suh a situation the SMO algorithm does an expensive and wasteful searhlooking for a seond index so as to take a step. We believe that this is a major soure of ineÆienyin the SMO algorithm.5 Modi�ations of the SMO Algorithm.In this setion we suggest two modi�ed versions of the SMO algorithm, eah of whih overomesthe problems mentioned in the last setion. As we will see in the omputational evaluation ofsetion 6, these modi�ations are almost always better than the original SMO algorithm and, inmost situations they give quite a remarkable improvement in eÆieny when tested on severalbenhmark problems.In short, the modi�ations avoid the use of a single threshold value � and the use of (10) forheking optimality. Instead, two threshold parameters, bup and blow are maintained and (8) (or(9)) is employed for heking optimality. The two modi�ations are adequately desribed by the8

pseudo-odes given in the appendix. We only give some additional pointers that will help to givean easy understanding of the pseudo-odes. We assume that the reader is familiar with [9℄ and thepseudo-odes given there.1. Suppose, at any instant, Fi is available for all i. Let i low and i up be indies suh thatFi low = blow = maxfFi : i 2 I0 [I3 [I4g (11a)Fi up = bup = minfFi : i 2 I0 [I1 [I2g (11b)Then heking a partiular i for optimality is easy. For example, suppose i 2 I1 [I2. We onlyhave to hek if Fi < Fi low � 2� . If this ondition holds then there is a violation, and, in that aseSMO's takeStep proedure an be applied to the index pair, (i; i low). Similar steps an be givenfor indies in the other sets. Thus, in our approah, the heking of optimality of i2 and the hoieof the seond index, i1 go hand in hand, unlike the original SMO algorithm. As we will see below,we ompute and use (i low; blow) and (i up; bup) via an eÆient updating proess.2. To be eÆient, we would, like in the SMO algorithm, spend muh of the e�ort altering �i,i 2 I0; ahe for Fi, i 2 I0 are maintained and updated to do this eÆiently. And, when optimalityholds for all i 2 I0, only then examine all indies for optimality.3. Some extra steps are added to the takeStep proedure. After a suessful step using a pairof indies, (i2; i1), let ~I = I0 [fi1; i2g. We ompute, partially, (i low; blow) and (i up; bup) using ~Ionly (i.e., use only i 2 ~I in (11)). Note that these extra steps are inexpensive beause ahe forfFi, i 2 I0g is available and updates of Fi1 , Fi2 are easily done. A areful look shows that, sinei2 and i1 have been just involved in a suessful step, eah of the two sets, ~I \ (I0 [I1 [I2) and~I \ (I0 [I3 [I4), is non-empty; hene the partially omputed (i low; blow) and (i up; bup) will notbe null elements. Sine i low and i up ould take values from fi2; i1g and they are used as hoiesfor i1 in the subsequent step (see item 1 above), we keep the values of Fi1 and Fi2 also in ahe.4. When working only with �i, i 2 I0, i.e., a loop with examineAll=0, one should note that,if (8) holds at some point then it implies that optimality holds as far as I0 is onerned. (This isbeause, as mentioned in item 3 above, the hoie of blow and bup are inuened by all indies inI0.) This gives an easy way of exiting this loop.5. There are two ways of implementing the loop involving indies in I0 only (examineAll=0).Method 1. This is in line with what is done in SMO. Loop through all i2 2 I0. For eah i2,9

hek optimality and, if violated, hoose i1 appropriately. For example, if Fi2 < Fi low � 2� thenthere is a violation, and, in that ase hoose i1 = i low.Method 2. Always work with the worst violating pair, i.e., hoose i2 = i low and i1 = i up.Depending on whih one of these methods is used, we all the resulting overall modi�ation ofSMO as SMO-Modi�ation 1 and SMO-Modi�ation 2.6. When optimality on I0 holds, as already said we ome bak to hek optimality on all indies(examineAll=1). Here we loop through all indies, one by one. Sine (blow; i low) and (bup; i up)have been partially omputed using I0 only, we update these quantities as eah i is examined. For agiven i, Fi is omputed �rst and optimality is heked using the urrent (blow; i low). For example,if i 2 I1 [I2 and Fi < blow � 2� , then there is a violation, in whih ase we take a step using(i; i low). On the other hand, if there is no violation, then (i up; bup) are modi�ed using Fi, i.e, ifFi < bup then we do: i up := i and bup := Fi.7. Suppose we do as desribed above. What happens if there is no violation for any i in a loophaving examineAll=11? Can we onlude that optimality holds for all i? The answer is: YES. Thisis easy to see from the following argument. Suppose, by ontradition, there does exist one (i; j)pair suh that they de�ne a violation, i.e., they satisfy (9). Let us say, i < j. Then j would nothave satis�ed the optimality hek in the above desribed implementation beause Fi would have,earlier than j is seen, a�eted either the alulation of blow and/or bup settings. In other words,even if i is mistakenly taken as having satis�ed optimality earlier in the loop, j will be detetedas violating optimality when it is analysed. Only when (8) holds it is possible for all indies tosatisfy the optimality heks. Furthermore, when (8) holds and the loop over all indies has beenompleted, the true values of bup and blow, as de�ned in (5) would have been omputed sine allindies have been enountered.6 Computational Comparison.In this setion we ompare the performane of our modi�ations against the original SMO algorithm.We implemented all these methods in Fortran and ran them using f77 on a 200 MHz Pentiummahine. The value, � = 0:001 was used for all experiments. The following standard problemswere used in our testing: Wisonsin Breast Caner data[1, 17℄; Two Spirals data[14℄; Chekers10

Data Set �2 n mWisonsin Breast Caner 4.0 9 683Two Spirals 0.5 2 195Chekers 0.5 2 465Adult-1 10.0 123 1605Adult-4 10.0 123 4781Adult-7 10.0 123 16100Web-1 10.0 300 2477Web-4 10.0 300 7366Web-7 10.0 300 24692Table 1: Data Set Properties.data[5℄; UCI Adult data[10℄; and Web page lassi�ation data[10,4℄. Exept for Chekers data, forwhih we reated a random set of points on a 4� 4 hekers grid (see [6℄), all other data sets weredownloaded from the sites mentioned in the above referenes and were used in full for training. i.e.,no division into training/validation/test sets was made. In the ase of Adult data set, the inputsare represented in a speial binary format, as used by Platt in his testing of SMO. To study salingproperties as training data grows, Platt did staged experiments on the Adult and Web data. Wehave used only the data from the �rst, fourth and seventh stages. The gaussian kernel,k(xi; xj) = exp(�0:5kxi � xjk2=�2)was used in all experiments. The �2 values employed, together with n, the dimension of the input,and m, the number of training points, are given in Table 1. The �2 values given in the table werehosen as follows. For the Adult and Web data the �2 values are the same as those used by Plattin his experiments on SMO; for other data, we hose �2 suitably to get good generalization.When a partiular method is used for SVM design, the value of C is usually unknown, and it hasto be hosen by trying a number of values and using a validation set. Therefore, good performaneof a method over a range of C values is important. Therefore for eah problem we have tested thealgorithms over an appropriate range of C values.The ost of updating the ahe for Fi is the dominant part of the omputational ost. Hene11

the total number of kernel evaluations is a very good indiator of the omputing ost. Sinesuh a measure is pretty muh independent of the omputing environment used, it is easy forothers developing new algorithms to ompare their methods against the ones studied in this paper,without atually running these methods again. In Tables 2-10 we have given the total number ofkernel evaluations for the various problems tried. To point out the e�et of the hoie of randomseed on the ost assoiated with the original SMO algorithm, we have reported osts for two randomseeds. (We haven't done this for the Web data sine, for that data, hange of random seed had noe�et on the omputational ost.) Our SMO modi�ations do not require any random seed.It is very lear that the modi�ations outperform the original SMO algorithm. In many situa-tions the improvement in eÆieny is remarkable. Between the two modi�ations, the seond onefares better overall.7 Conlusion.In this paper we have pointed out an important soure of ineÆieny in Platt's SMO algorithmthat is aused by the operation with a single threshold value. We have suggested two modi�ationsof the SMO algorithm that overome the problem by eÆiently maintaining and updating twothreshold parameters. Our omputational experiments show that these modi�ations speed up theSMO algorithm onsiderably in many situations. Platt has already established the SMO algorithmto be one of the fastest algorithms for SVM design. The modi�ed versions of SMO presented in thispaper enhane the value of the SMO algorithm even further. The ideas mentioned in this paperfor SVM lassi�ation an also be extended to the SMO regression algorithm[13℄. We will reportthe results of that extension in another paper[12℄.

12

C SMO SMO SMO SMORandom Seed 1 Random Seed 2 Modi�ation 1 Modi�ation 20.02 47.855 36.822 1.193 3.5000.04 2.936 2.671 2.005 1.7250.06 2.114 2.648 2.035 1.9500.10 1.627 1.824 1.860 1.6800.20 1.647 2.045 1.775 1.4040.40 1.720 1.372 1.362 1.2550.50 1.613 1.618 1.265 1.1830.70 1.653 1.377 1.339 1.0651.00 1.531 1.560 1.474 1.2102.00 1.516 1.686 1.331 1.0193.00 1.625 1.690 1.314 0.990Table 2: Wisonsin Breast Caner data: Number of Kernel evaluations � 10�6Referenes[1℄ R. Bennett and O.L. Mangasarian, Robust linear programming disrimination of two linearlyinseparable sets, Optimization Methods and Software, Vol.1, 1992, pp.23-34.[2℄ C.J.C. Burges, A tutorial on support vetor mahines for pattern reognition, Data Miningand Knowledge Disovery, Vol.2, Number 2, 1998.[3℄ T.T. Friess, Support vetor networks: The kernel adatron with bias and soft-margin, Teh.Report, The University of SheÆeld, Dept. of Automati Control and Systems Engineering,SheÆeld, England, 1998.[4℄ T. Joahims, Making large-sale support vetor mahine learning pratial, in B. Sh�olkopf,C. Burges, A. Smola. Advanes in Kernel Methods: Support Vetor Mahines, MIT Press,Cambridge, MA, Deember 1998.[5℄ L. Kaufman, Solving the quadrati programming problem arising in support vetor lassi�-ation, in B. Sh�olkopf, C. Burges, A. Smola. Advanes in Kernel Methods: Support Vetor13

C SMO SMO SMO SMORandom Seed 1 Random Seed 2 Modi�ation 1 Modi�ation 20.02 0.093 0.100 0.096 0.0960.04 0.110 0.134 0.097 0.0970.06 0.135 0.469 0.097 0.0970.10 0.116 0.117 0.097 0.0970.20 0.099 0.148 0.097 0.0970.40 0.255 0.179 0.172 0.1710.50 0.198 0.241 0.284 0.3230.70 0.457 0.445 0.240 0.2101.00 0.559 0.548 0.571 0.4432.00 3.343 6.055 2.900 1.5203.00 4.128 2.911 2.905 1.71010.0 3.343 4.413 3.043 1.690Table 3: Two Spirals data: Number of Kernel evaluations � 10�6C SMO SMO SMO SMORandom Seed 1 Random Seed 2 Modi�ation 1 Modi�ation 21.0 1.180 1.012 0.810 0.6705.0 1.320 1.165 1.275 1.04410.0 1.387 1.624 1.453 1.11350.0 3.241 2.584 2.353 1.739102 6.027 5.038 4.578 2.1195� 102 20.187 9.970 7.556 4.607103 17.518 16.943 7.321 8.5695� 103 62.729 96.136 49.270 38.660104 60.202 68.392 52.000 17.2745� 104 34.093 44.377 28.380 26.450Table 4: Chekers data: Number of Kernel evaluations � 10�614

C SMO SMO SMO SMORandom Seed 1 Random Seed 2 Modi�ation 1 Modi�ation 20.10 1.129 1.077 0.324 0.3250.20 0.917 1.042 0.569 0.5700.40 0.752 0.751 0.546 0.5450.50 0.846 0.734 0.543 0.5390.70 0.834 0.944 0.545 0.5411.00 0.723 0.728 0.547 0.6472.00 0.891 0.868 0.630 0.6103.00 0.888 0.863 0.727 0.6965.00 1.053 1.082 0.845 0.74910.0 2.041 2.089 1.428 1.19820.0 3.921 3.904 2.463 1.94650.0 7.915 8.446 4.740 3.402100.0 13.315 12.358 6.543 4.502200.0 16.656 19.692 9.382 5.588500.0 24.019 25.676 14.715 6.942Table 5: Adult 1 data: Number of Kernel evaluations � 10�7

15

C SMO SMO SMO SMORandom Seed 1 Random Seed 2 Modi�ation 1 Modi�ation 20.10 9.812 9.290 6.856 5.8190.20 10.074 8.145 4.506 4.4990.40 7.739 7.745 4.336 4.3300.50 9.472 7.657 5.233 4.3410.70 6.706 6.700 4.388 4.3521.00 6.715 7.588 4.498 4.4672.00 7.163 7.200 5.034 4.9233.00 7.901 6.939 5.638 5.4465.00 8.980 9.631 7.204 5.88010.0 16.431 15.086 11.711 9.31020.0 33.564 33.288 20.864 15.38650.0 77.886 71.813 42.554 29.409100.0 128.383 126.491 66.100 48.257200.0 207.332 217.001 112.869 78.402500.0 384.589 393.042 216.034 122.202Table 6: Adult 4 data: Number of Kernel evaluations � 10�7
C SMO SMO SMO SMORandom Seed 1 Random Seed 2 Modi�ation 1 Modi�ation 20.10 193.680 206.289 31.590 31.5900.40 90.758 90.648 45.742 45.7201.00 90.091 71.677 47.993 47.4905.00 103.471 103.198 77.732 70.70020.0 370.405 380.250 224.689 153.932Table 7: Adult 7 data: Number of Kernel evaluations � 10�716

C SMO SMO SMOModi�ation 1 Modi�ation 20.10 0.679 0.633 0.6320.20 1.197 0.755 0.7270.40 1.215 0.893 0.9710.50 1.013 0.912 0.9180.70 0.963 1.070 1.0321.00 1.206 1.063 0.9882.00 1.365 1.260 1.1423.00 1.449 1.308 1.2705.00 1.252 1.178 1.24210.0 1.421 1.397 1.34820.0 1.570 1.364 1.22150.0 1.621 1.373 1.363100.0 1.666 1.301 1.250200.0 1.336 1.366 1.257500.0 1.378 1.442 1.420Table 8: Web 1 data: Number of Kernel evaluations � 10�7

17

C SMO SMO SMOModi�ation 1 Modi�ation 20.10 6.714 4.126 3.5780.20 7.686 3.937 4.0100.40 9.155 4.333 4.9720.50 8.808 5.102 5.1850.70 9.146 6.199 5.0591.00 8.154 6.156 6.0612.00 8.494 7.436 6.5943.00 9.887 8.331 9.0925.00 10.826 8.749 9.46410.0 9.685 11.193 12.40220.0 12.162 9.795 10.26550.0 10.733 10.973 10.305100.0 12.155 11.314 11.821200.0 12.169 10.177 10.907500.0 12.792 11.121 10.661Table 9: Web 4 data: Number of Kernel evaluations � 10�7

18

C SMO SMO SMOModi�ation 1 Modi�ation 20.10 134.575 33.218 38.7250.20 143.039 40.536 46.8770.40 132.594 48.952 40.1870.50 115.698 50.801 45.3820.70 106.148 42.707 53.2821.00 120.296 49.265 48.3102.00 146.941 56.402 64.2353.00 112.226 58.735 69.3295.00 115.890 82.549 69.30810.0 113.551 85.744 86.43620.0 103.516 95.809 93.83050.0 129.473 93.215 89.486100.0 136.820 91.090 110.006200.0 148.265 93.362 94.349500.0 125.315 94.553 105.505Table 10: Web 7 data: Number of Kernel evaluations � 10�7

19

Mahines, MIT Press, Cambridge, MA, Deember 1998.[6℄ S.S. Keerthi, S.K. Shevade, C. Bhattaharyya and K.R.K. Murthy, A fast iterative nearestpoint algorithm for support vetor mahine lassi�er design, Teh. Report TR-ISL-99-03, In-telligent Systems Lab, Dept. of Computer Siene and Automation, Indian Institute of Siene,Bangalore, India, Marh 1999. See: http://guppy.mpe.nus.edu.sg/~mpessk[7℄ O.L. Mangasarian and D.R. Musiant, Suessive overrelaxation for support vetor mahines,Teh. Report, Computer Sienes Dept., University of Wisonsin, Madison, WI, USA, 1998.[8℄ E. Osuna, R. Freund and F. Girosi, An improved training algorithm for support vetor ma-hines, in J. Prinipe, L. Giles, N. Morgan and E. Wilson, editors, Neural Networks for SignalProessing VII { Proeedings of the 1997 IEEE Workshop, pp.276-285, New York, 1997, IEEE.[9℄ J.C. Platt, Fast training of support vetor mahines using sequential minimal optimization, inB. Sh�olkopf, C. Burges, A. Smola. Advanes in Kernel Methods: Support Vetor Mahines,MIT Press, Cambridge, MA, Deember 1998.[10℄ J.C. Platt, Adult and Web Datasets. http://www.researh.mirosoft.om/~jplatt[11℄ J.C. Platt, Using sparseness and analyti QP to speed training of support vetor mahines,in Advanes in Neural Information Proessing Systems 11, M.S. Kearns, S.A. Solla and D.A.Cohn, eds., MIT Press, 1999.[12℄ S.K. Shevade, S.S. Keerthi, C. Bhattaharyya and K.R.K. Murthy, Improved versions of theSMO algorithm for SVM regression, Teh. Rept., Dept. of Meh. and Prod. Engrg., NationalUniversity of Singapore, Singapore, Aug 1999, Under Preparation.[13℄ A.J. Smola and B. Sh�olkopf, A tutorial on support vetor regression, NeuroCOLT TehnialReport TR-1998-030, Royal Holloway College, London, UK, 1998.[14℄ Two Spirals Data.ftp://ftp.boltz.s.mu.edu/pub/neural-benh/benh/two-spirals-v1.0.tar.gz[15℄ V. Vapnik, Estimation of Dependenes Based on Empirial Data. Springer-Verlag, Berlin,1982. 20

[16℄ V. Vapnik, The Nature of Statistial Learning Theory. Springer-Verlag, New York, 1995.[17℄ Wisonsin Breast Caner Data.ftp://128.195.1.46/pub/mahine-learning-databases/breast-aner-wisonsin/Appendix. Pseudo-Codes for Modi�ed SMO Algorithms.The pseudo-odes for the improved SMO algorithms are presented below. Here, statements startingwith \%" denote omments.target = desired output vetorpoint = training point matrixfahe = ahe vetor for Fi values% Note: Our definition of Fi is different from the Ei in Platt's SMO% algorithm. Our Fi does not subtrat any threshold.proedure takeStep(i1,i2)% Muh of this proedure is same as that in Platt's SMO pseudo-ode.if (i1 == i2) return 0alph1 = Lagrange multiplier for i1y1 = target[i1℄F1 = fahe[i1℄s = y1*y2Compute L, Hif (L == H)return 0k11 = kernel(point[i1℄,point[i1℄)k12 = kernel(point[i1℄,point[i2℄)k22 = kernel(point[i2℄,point[i2℄)eta = 2*k12-k11-k22if (eta < 0) 21

{ a2 = alph2 - y2*(F1-F2)/etaif (a2 < L) a2 = Lelse if (a2 > H) a2 = H}else{ Lobj = objetive funtion at a2=LHobj = objetive funtion at a2=Hif (Lobj > Hobj+eps)a2 = Lelse if (Lobj < Hobj-eps)a2 = Helsea2 = alph2}if (|a2-alph2| < eps*(a2+alph2+eps))return 0a1 = alph1+s*(alph2-a2)Update weight vetor to reflet hange in a1 & a2, if linear SVMUpdate fahe[i℄ for i in I_0 using new Lagrange multipliersStore a1 and a2 in the alpha array% The update below is simply ahieved by keeping and updating information% about alpha_i being at 0, C or in between them. Using this together with% target[i℄ gives information as to whih index set i belongs.Update I_0, I_1, I_2, I_3 and I_4% Compute updated F values for i1 and i2...fahe[i1℄ = F1 + y1*(a1-alph1)*k11 + y2*(a2-alph2)*k12fahe[i2℄ = F2 + y1*(a1-alph1)*k12 + y2*(a2-alph2)*k22Compute (i_low, b_low) and (i_up, b_up) by applying equations (11a) and22

(11b), using only i1, i2 and indies in I_0; see item 3 of setion 5.return 1endproedureproedure examineExample(i2)y2 = target[i2℄alph2 = Lagrange multiplier for i2if (i2 is in I_0){ F2 = fahe[i2℄}else{ ompute F2 = F_i2 and set fahe[i2℄ = F2% Update (b_low, i_low) or (b_up,i_up) using (F2,i2)...if ((i2 is in I_1 or I_2) && (F2 < b_up))b_up = F2, i_up = i2else if ((i2 is in I_3 or I_4) && (F2 > b_low))b_low = F2, i_low = i2}% Chek optimality using urrent b_low and b_up and, if% violated, find an index i1 to do joint optimization with i2...optimality = 1if (i2 is in I_0, I_1 or I_2){ if (b_low-F2 > 2*tol)optimality = 0, i1 = i_low}if (i2 is in I_0, I_3 or I_4){ 23

if (F2-b_up > 2*tol)optimality = 0, i1 = i_up}if (optimality == 1)return 0% For i2 in I_0 hoose the better i1...if (i2 is in I_0){ if (b_low-F2 > F2-b_up)i1 = i_lowelsei1 = i_up}if takeStep(i1,i2)return 1elsereturn 0endproeduremain routine for Modifiation 1:initialize alpha array to all zeroinitialize b_up = -1, i_up to any one index of lass 1initialize b_low = 1, i_low to any one index of lass 2set fahe[i_low℄ = 1 and fahe[i_up℄ = -1numChanged = 0;examineAll = 1;while (numChanged > 0 | examineAll){ numChanged = 0;if (examineAll) 24

{ loop I over all training examplesnumChanged += examineExample(I)}else{ loop I over I_0numChanged += examineExample(I)% It is easy to hek if optimality on I_0 is attained...if (bup > blow - 2*tol) at any Iexit the loop after setting numChanged = 0}if (examineAll == 1)examineAll = 0else if (numChanged == 0)examineAll = 1}
main routine for Modifiation 2:initialize alpha array to all zeroinitialize b_up = -1, i_up to any one index of lass 1initialize b_low = 1, i_low to any one index of lass 2set fahe[i_low℄ = 1 and fahe[i_up℄ = -1numChanged = 0;examineAll = 1;while (numChanged > 0 | examineAll){ numChanged = 0;if (examineAll) 25

{ loop I over all training examplesnumChanged += examineExample(I)}else% The following loop is the only differene between the two SMO% modifiations. Whereas, in modifiation 1, the inner loop selets% i2 from I_0 sequentially, here i2 is always set to the urrent% i_low and i1 is set to the urrent i_up; learly, this orresponds% to hoosing the worst violating pair using members of I_0 and some% other indies.{ inner_loop_suess = 1;do until ((bup > blow - 2*tol) | inner_loop_suess = 0){ i2 = i_lowy2 = target(i2)alph2 = Lagrange multiplier for i2F2 = fahe[i2℄i1 = i_upinner_loop_suess = takeStep(i_up,i_low)numChanged += inner_loop_suess}numChanged = 0}if (examineAll == 1)examineAll = 0else if (numChanged == 0)examineAll = 1} 26

27

