
The Lumi�ere Project: Bayesian User Modeling for Inferringthe Goals and Needs of Software Users�Eric Horvitz, Jack Breese, David Heckerman, David Hovel, Koos RommelseyMicrosoft ResearchRedmond, WA 98052-6399fhorvitz,breese,heckerma,davidhovg@microsoft.comAbstractThe Lumi�ere Project centers on harnessingprobability and utility to provide assistanceto computer software users. We review workon Bayesian user models that can be em-ployed to infer a user's needs by consider-ing a user's background, actions, and queries.Several problems were tackled in Lumi�ereresearch, including (1) the construction ofBayesian models for reasoning about thetime-varying goals of computer users fromtheir observed actions and queries, (2) gain-ing access to a stream of events from soft-ware applications, (3) developing a languagefor transforming system events into observa-tional variables represented in Bayesian usermodels, (4) developing persistent pro�les tocapture changes in a user's expertise, and (5)the development of an overall architecture foran intelligent user interface. Lumi�ere proto-types served as the basis for the O�ce Assis-tant in the Microsoft O�ce '97 suite of pro-ductivity applications.1 IntroductionUncertainty is ubiquitous in attempts to recognizean agent's goals from observations of behavior. TheLumi�ere project at Microsoft Research has been fo-cused on leveraging methods for reasoning under un-certainty about the goals of software users. At theheart of Lumi�ere research and prototypes are Bayesianuser models that capture the uncertain relationshipsamong the goals and needs of a user and observationsabout program state, sequences of actions over time,and words in a user's query. Motivating problems in-clude the computation and use of probability distri-butions over a user's goals for providing appropriate�Proceedings of the Fourteenth Conference on Uncer-tainty in Arti�cial Intelligence, Madison, WI, July 1998,Morgan Kaufmann Publishers, pp. 256-265.yPresently at Applicare Medical Imaging B.V., Box936, 3700 AX Zeist, Netherlands.

assistance or automated services, for dynamically tai-loring language models in speech recognition, and forappropriately guiding the allocation of computationalresources in an operating system.We present challenges with the construction of keycomponents of the Lumi�ere/Excel prototype for theExcel spreadsheet application. The Lumi�ere projectwas initiated in 1993, and the initial Lumi�ere/Excelprototype was �rst demonstrated to the Microsoft Of-�ce division in January 1994. Research on new appli-cations and extensions continued in parallel with ef-forts to integrate portions of the prototype into com-mercially available software applications. In January1997, a derivative of Lumi�ere research shipped as theO�ce Assistant in Microsoft O�ce '97 applications.We will describe key issues with user modeling andprovide an overview of Bayesian reasoning and deci-sion making about user needs. Then, we will discussuser modeling for identifying the needs of users work-ing with desktop productivity software. We will re-view the components and overall architecture of theLumi�ere system. Finally, we will discuss the inuenceof Lumi�ere research on software products.2 Bayesian User ModelsWe shall focus on the use of Bayesian networks andinuence diagrams in embedded applications to makeinferences about the goals of users{and to take idealactions based on probability distributions over thesegoals. We found that Bayesian models can be e�ectivein diagnosing a user's needs and can provide useful en-hancements to legacy software applications when em-bedded within these programs. Additionally, Bayesianuser models can provide an infrastructure for buildingnew kinds of services and applications in software.To date, graphical probabilistic models have been em-ployed largely for such diagnostic tasks as computingthe likelihood of alternate diseases in patients or dis-orders in machines (Horvitz, Breese & Henrion, 1988;Heckerman, Horvitz & Nathwani, 1992; Heckerman,Breese & Rommelse, 1995). However, there has beengrowing interest in the application of Bayesian anddecision-theoretic methods to the task of modeling the



beliefs, intentions, goals, and needs of users (Jameson,1996; Horvitz, 1997). Such user modeling problemstypically are dominated by uncertainty.Representations of probability and utility have beenexplored previously in a variety of user-modeling ap-plications. Models of user expertise and abilities havebeen used in the context of custom-tailoring the behav-ior of Bayesian decision-support systems to users. Forexample, multiattribute utility models were employedin early versions of the Path�nder pathology diagnosticsystem for pathology to custom-tailor question askingand explanation to users with di�ering levels of exper-tise (Horvitz, Heckerman, Nathwani & Fagan, 1984).Bayesian networks were employed as user models inthe Vista system to model the interpretation of pat-terns of evidence by ight engineers at the NASA Mis-sion Control Center. In that application, concurrentinference with the user and expert models is used to se-lect the most valuable information to display (Horvitz& Barry, 1995). In the realm of modeling the goals ofusers, temporal probabilistic models of a pilot's goalswere explored by Cooper, et al., guided by the chal-lenge of custom-tailoring information displayed to pi-lots of commercial aircraft (Cooper, Horvitz, Hecker-man & Curry, 1988). Probabilistic models have beenexplored as a representation for recognizing common-sense plans (Charniak & Goldman, 1993), for mak-ing inferences about the goals of car drivers in nav-igating in tra�c (Pynadath & Wellman, 1995), andfor predicting actions in a multiuser computer game(Albrecht, Zukerman, Nicholson & Bud, 1997). In-terest has also been growing steadily on applicationsof Bayesian user modeling in educational systems. Inparticular, there have been e�orts to model compe-tency and to diagnose problems with understandingcomputer-based tutoring (Conati, Gertner, VanLehn& Druzdzel, 1997).The high-level goals of the Lumi�ere project are cap-tured by the inuence diagram displayed in Figure 1which represents key aspects of user modeling and au-tomated assistance in computing applications. The de-cision model considers a user's goals and needs. Goalsare target tasks or subtasks at the focus of a user's at-tention. Needs are information or automated actionsthat will reduce the time or e�ort required to achievegoals. In some situations, we can exploit a predeter-mined mapping between goals and needs. However, wetypicallymust consider uncertainties and dependenciesamong these and related variables. As indicated by thevariables and dependencies in the inuence diagram,a user's acute needs are inuenced by the acute goalsas well as the user's competency with using software.Prior assistance in the form of online help and theuser's background representing experience with com-puting applications inuence the user's competence.A user's needs directly inuence or cause patterns ofactivity that might be sensed by watching a user's ac-tivity. Such activity includes sequences of user actionsrecorded as the user interacts with a mouse and key-board as well as visual and acoustic clues that mightbe sensed by a video camera and microphone. A user'sgoals also inuence the set of active documents and the
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queryFigure 1: An inuence diagram for providing intel-ligent assistance given uncertainty in a user's back-ground, goals, and competency in working with a soft-ware application.presence, instantiation, and display of data structures(e.g., Does a user-authored chart exist in a spread-sheet project? Is the chart currently visible? Does itcurrently have system focus?).At times, a user may explicitly request assistance. Auser's acute needs inuence the terms appearing ina user's explicit typed or vocalized queries. As indi-cated in the inuence diagram, the overall goal is totake automated actions to optimize the user's expectedutility. A system taking autonomous action to assistusers needs to balance the bene�ts and costs such ac-tions. The value of actions depend on the nature of theaction, the cost of the action, and the user's needs. As-sessing and integrating such user models would allowa system to compute a probability distribution over auser's informational needs in real time, given a set ofobservations about activity and explicit queries, whensuch queries are issued.3 Framing, Constructing, andAssessing Bayesian User ModelsMoving from a high-level speci�cation of the prob-lem of Bayesian user modeling to speci�c domainsand prototypes requires a detailed consideration of dis-tinctions and relationships for particular software pro-grams and settings. To better understand the needsand behaviors of users as they encounter problems withthe use of a software application, we worked with psy-chologists at Microsoft's usability laboratory to per-form studies with human subjects.One of the goals of the studies was to gauge the abilityof experts to perform the task of guessing users' goalsand to provide assistance by simplywatching the user'sactions through the \keyhole" of the interface. Di�-culties noted by experts in the study would be taken asan indication of the di�culty of automating the task ofassisting users. We were also interested in identifyingevidential distinctions that experts might be using toinfer (1) the likelihood that a user needed assistance,



and (2) the type of help that was needed given thatassistance was desired.The studies were based on a \Wizard of Oz" design.In the studies, naive subjects with di�erent levels ofcompetence in using the Microsoft Excel spreadsheetapplication were given a set of spreadsheet tasks. Sub-jects were informed that an experimental help systemwould be tracking their activity and would be occa-sionally making guesses about the best way to helpthem. Assistance would appear on an adjacent com-puter monitor. Experts were positioned in a separateroom that was isolated acoustically from the users.The experts were given a monitor to view the subjects'screen, including their mouse and typing activity, andcould type advice to users. Experts were not informedabout the nature of the set of spreadsheet tasks givento the user. Both subjects and experts were told toverbalize their thoughts and the experts, subjects, andthe subjects' display were videotaped.The studies led to several insights. We found that ex-perts had the ability to identify user goals and needsthrough observation. However, recognizing the goalsof users was a challenging task. Experts were typicallyuncertain about a user's goals and about the value ofproviding di�erent kinds of assistance. At times, goalswould be recognized with an \Aha!" reaction aftera period of confusion. We learned that poor advicecould be quite costly to users. Even though subjectswere primed with a description of the help system asbeing \experimental," advice appearing on their dis-plays was typically examined carefully and often takenseriously; even when expert advice was o� the mark,subjects would often become distracted by the adviceand begin to experiment with features described bythe wizard. This would give experts false con�rmationof successful goal recognition, and would bolster theircontinuing to give advice pushing the user down a dis-tracting path. Such patterns of poor guesses and \con-�rmatory" feedback could lead to a focusing on thewrong problem and a loss in e�ciency. Experts wouldbecome better over time with this and other problems,learning, for example, to becoming conservative witho�ering advice, using conditional statements (i.e.,\ifyou are trying to do x, then..."), and decomposing ad-vice into a set of small, easily understandable steps.3.1 Identi�cation of Distinctions withRelevance to User NeedsThe studies with human subjects helped us to iden-tify several important classes of evidential distinctions.These observational clues appeared to be valuable formaking inferences about a user's problems and formaking an assessment of the user's need for assistance.The classes of evidence include:� Search: Repetitive, scanning patterns associatedwith attempts to search for or access an itemor functionality. Such distinctions include ob-servation of the user exploring multiple menus,scrolling through text, and mousing over andclicking on multiple non-active regions.

� Focus of attention: Selection and/or dwelling ongraphical objects, dwelling on portions of a docu-ment or on speci�c subtext after scrolling throughthe document.� Introspection: A sudden pause after a period ofactivity or a signi�cant slowing of the rate of in-teraction.� Undesired e�ects: Attempts to return to a priorstate after an action. These observations includeundoing the e�ect of recent action, including is-suing an undo command, closing a dialog boxshortly after it is opened without invocating anoperation o�ered in the context of the dialog.� Ine�cient command sequences: User performingoperations that could be done more simply or ef-�ciently via an alternate sequence of actions orthrough easily accessible shortcuts.� Domain-speci�c syntactic and semantic content:Consideration of special distinctions in contentor structure of documents and how user inter-acts with these features. These include domain-speci�c features associated with the task.These classes, when subclassed with speci�c types ofdata structures and displayed objects, provide a richset of observations with probabilistic links to a user'sgoals. In our initial systems, we avoided detailedmodeling of deeper commonsense knowledge associ-ated with the syntactic and semantic content of doc-uments and application functionality, and focused ini-tially on the other classes of distinctions.3.2 Structuring Bayesian User ModelsGiven the results of the user studies, we set out tobuild and assess Bayesian models with the ability todiagnose a user's needs. We were interested in thequality of inference we might achieve through consid-ering a user's background, ongoing and long-term useractions, data structures, as well as words in a user'squery when such a query was issued.Building e�ective user models hinges on de�ning ap-propriate variables and states of variables. The as-sessed (or learned) conditional probabilities and themonitoring of users hinge on crisp and appropriate def-initions of states of variables. For example, with theuse of discrete Bayesian networks, we need to clearlyde�ne the speci�c quantity of time we de�ne to be a\pause after activity."Figure 2 displays a small Bayesian network that rep-resents the dependency between a pause after activityand the likelihood that a user would welcome assis-tance. According to the model, a user being in thestate of welcoming assistance would shift the proba-bility distribution of observing pauses in activity. Thestate of desiring assistance also inuences the prob-ability of detecting a recent search through multiplemenus. We consider also the inuence of a user's ex-pertise and the di�culty of a task on the likelihood
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User distractedFigure 2: A portion of a Bayesian user model for infer-ring the likelihood that a user needs assistance, con-sidering pro�le information as well as observations ofrecent activity.that a user will need assistance. We also note thata user will pause if he or she is distracted by eventsunrelated to the user's task. As indicated in Figure2, we may wish to assert in the Bayesian user modelthat the di�culty of a task also directly inuences thelikelihood that a user will become distracted by otherevents.We worked with experts to construct, assess, and testBayesian models for several applications, tasks, andsubtasks. Some of our models were built to be \appli-cation covering" while others were designed to operateas simpler, context-sensitive agents that would be in-voked when speci�c patterns of activity were observed.As an example, we built and assessed a Bayesian modelfocused on assisting users with the Start button inWindows 95 shell to be invoked when a user was engag-ing the start button and spending more than a smallamount of time navigating within this menu or revis-iting the start button multiple times within a prede-�ned horizon. Figure 3 displays a portion of an earlyapplication-covering Bayesian network that we con-structed for diagnosing a user's goals with the Excelspreadsheet application.4 Temporal Reasoning about UserActionsBayesian user modeling from a sequence actions overtime poses a challenging temporal reasoning prob-lem. Explicit temporal reasoning adds signi�cant com-plexity to probabilistic representations and inference(Cooper, Horvitz & Heckerman, 1989). Investigationof temporal reasoning with dynamic Bayesian net-work models has focused on problems and approxi-mations for models that consider dependencies amongvariables within as well as between time slices (Dean& Kanazawa, 1989; Dagum, Galper & Horvitz, 1992;Nicholson & Brady, 1994).In the general case, we consider temporal dependen-cies between a user's goals at di�erent times and theuser's behavior. Figure 4 captures a Markov represen-tation of the temporal Bayesian user-modeling prob-lem, where we consider dependencies among variablesat adjacent time periods. As displayed in the tem-
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Figure 3: Partial structure of an early formulation ofa Bayesian user model for inferring a user's needs forthe Excel spreadsheet application.poral Bayesian network, we include temporal depen-dencies between goals at the present moment (Goalto)and at earlier time periods (Goalti), as well as amongobservations Ei made at di�erent time periods. Somevariables, such as the node labeled Pro�le in Figure 4,capturing the expertise of a user, may change slowlyor simply persist over time (as indicated by the arcrepresented by a broken line).We studied several approaches to temporal reasoningfor user assistance, including dynamic network modelsand single-stage formulations of the temporal reason-ing problem. In the single-stage temporal analyses,we de�ne the target diagnostic problem as inferringthe likelihood of alternative goals at the present mo-ment and embed considerations of time within the def-initions of observational variables or introduce time-dependent conditional probabilities.In our earliest Bayesian networks for Lumi�ere/Excel,including the model displayed in Figure 3, we repre-sented and assessed temporal relationships as part ofde�nitions of observations, such as the event, \userperformed action x less than y seconds ago." We alsoexperimented with approximations based on direct as-sessment of parameters of functions that specify theprobabilities of observations conditioned on goals as afunction of the amount of time that has transpired be-tween the observation and the present moment. Theintuition behind the approach is that observations seenat increasingly earlier times in the past have decreas-ing relevance to the current goals of the user.The time-dependent probability approach can beviewed as a temporal model-construction methodol-ogy. As highlighted in Figure 5 we formulate the prob-lem as a set of single stage inference problems about auser's present goals, and de�ne observations in termsof the amount of time t that has transpired betweenthe present moment and the most recent occurrenceof an action, Ei;t. We assess the conditional prob-abilities of time-indexed actions, p(Ei;tjGoalto). Wefound through assessment that a typical temporal dy-
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Lag of event from present moment

 Ei,t-n

p(Ei,t-n 
| Goalto)

Goalto

Ei,t-1

Goalto

Ei,to

Goalto

p(Ei,t-1 
| Goalto) p(Ei,to 

| Goalto)Figure 5: Formulation of the temporal reasoning prob-lem as a set of single-stage problems. We directly as-sess conditional probabilities of actions as a functionof the time that has passed since actions occurred.and system events. We found it challenging to gain ac-cess to appropriate streams of user and system events.Establishing a rapport with the Excel developmentteam was crucial for designing special instrumentedversions of Excel with a usable set of events. Evenso, we were limited in the nature of events we couldperceive and had to adapt the de�nition of evidentialvariables to mesh with available evidence.A special version of Excel was created that yieldedinformation about subsets of mouse and keyboard ac-tions, as well as information about the status of datastructures in Excel �les. The events included accessto menus being visited and dialog boxes being openedand closed. In addition, we could gain informationon the selection of speci�c objects, including drawingobjects, charts, cells, rows, and columns.We built an events system to establish a uid link be-tween low-level, atomic events and the higher-level se-mantics of user action we employed in user models.The Lumi�ere events architecture continues to moni-tor the stream of time-stamped atomic events and toconvert these events into higher-level predicates, ormodeled events representing user actions. We foundthat transforming system events into such modeledevents as \menu sur�ng," \mouse meandering," and\menu jitter" to be a challenging endeavor. De�ningthese and other events required detailed analysis ofthe atomic event streams and iterative composition oftemporal functions that could map the atomic eventsequences into higher-level observations.To make the de�nition of modeled events from atomicevents more e�cient and exible, we developed theLumi�ere Events Language. This temporal patternrecognition language allows atomic events to be usedas modeled events directly, as well as for streams ofatomic events to be formed into Boolean and set-theoretic combinations of the low-level events. Thelanguage also allows system designers to composenew modeled events from previously de�ned modeledevents and atomic events. The events language allowedus to build and modify transformation functions thatwould be compiled into run-time �lters for modeledevents. As an example, the following primitives areprovided in the event language:� Rate(xi; t): The number of times an atomic eventxi occurs in t seconds or commands.
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term-spotting methodology for reasoning about free-text queries (Heckerman & Horvitz, 1998). TheBayesian information retrieval system recognizes ap-proximately 600 terms and considers the probabilisticrelevance of these terms to the areas of assistance con-sidered by Lumi�ere/Excel. When queries are available,inference about a user goals, conditioned on a user'sactions and the status of data structures, are com-bined with inference about a user's goals from words.Temporal reasoning was performed with the dynamictemporal modeling approach described in Section 4.6.1 Overall Lumi�ere/Excel ArchitectureThe overall Lumi�ere/Excel architecture is displayed inFigure 9. Events from the interface are transformedinto time-stamped observations. The observations areinput to a Bayesian model and a probability distribu-tion over user needs is inferred. If a query is madeavailable, the posterior probabilities from the eventssystem and the Bayesian term-spotting approach arecombined through a weighted multiplication to yield a�nal posterior distribution over needs. Beyond reason-ing about the probability distribution over user prob-lems, the system also infers the likelihood that a userneeds assistance at the present moment. This proba-bility is used to control the autonomous display of as-sistance when the system is running behind the scenes.A user-speci�ed probability threshold is used to con-trol the autonomous assistance.6.2 Lumi�ere/Excel Control PoliciesWe experimented with several overall control schemesfor the system. In a pulsed strategy the system clockmakes a call at a regular interval to a cycle of eventanalysis, inference, and interface action (dependingon the inferred results and the user-speci�ed thresh-old). In an event-driven control policy, speci�c setsof atomic and or modeled events are labeled as trig-ger events. When such events occur, a broader eventsanalysis and an inference cycle is triggered. We alsoexperimented with an augmented pulsed approach,where the system calls an analysis cycle at speci�ctime intervals, but also when speci�c events are noted.In a deferred analysis, we attempt to do an analysisat prespeci�ed time intervals but only when idle timeis detected. Other opportunities for control includethe use of a relatively simple probabilistic or decision-theoretic analysis to make decisions about invoking alarger, less tractable analysis.6.3 Capturing and Harnessing a User Pro�leWe explored several approaches to custom-tailoringthe performance of Lumi�ere/Excel to users with di�er-ent expertise. In a basic approach to custom-tailoringassistance, we assessed from experts probability dis-tributions over a user's needs for di�erent classes ofuser expertise, and allowed users to specify their back-ground when using the system.We also developed the means for updating these prob-



Figure 7: Inference behind the scenes. Components pictured include (from left to right), a display of the atomicevent stream, probability distribution over needs, probability that a user would appreciate help at the currentmoment, and the user interface for the prototype.abilities dynamically based on observation of setsof competency indicator tasks being completed suc-cessfully or speci�c help topics being accessed anddwelled upon. Beyond analyzing real-time events,Lumi�ere/Excel maintains a persistent competency pro-�le in the operating system's registry. The system wasgiven the ability to capture at store at run time setsof key tasks completed and help topics reviewed. Thispro�le can be used to update the probability distribu-tion over needs. In a more general approach, a versionof Lumiere was created that enables experts to au-thor special competency variables in the Bayesian usermodel. These variables have values that reect the na-ture and number of times the user demonstrates suc-cessful manipulation of di�erent functionalities. Thesevariables can be integrated into the model as any othervariable but their states are stored in the persistentuser pro�le.6.4 Lumi�ere/Excel in OperationIn operation, the Lumi�ere/Excel system continues tomonitor events and to update a probability distribu-tion over a user's needs. Given a stream of user events,the system infers needs as well as the overall probabil-ity that the user would like assistance immediately.Figure 7 displays a snapshot of Lumi�ere's instrumen-tation. The small window in the background of the�gure displays the stream of atomic events and ob-servations derived from the events. The bar graph infront of the event monitor displays the inferred prob-

ability distribution over the needs of the user, giventhe stream of evidence. Overlayed at the top of theinferred needs, is a bar graph representing the likeli-hood that the user would like to be noti�ed with someassistance immediately. A user interface for displayingresults and interacting with Lumi�ere/Excel appears inthe foreground. The left text box of the interface dis-plays recommended assistance sorted by likelihood. Ainput �eld allows users to input free-text queries to thesystem. A menu below the query �eld allows users tospecify their level of competency.Figure 8 displays the Lumi�ere prototype's user inter-face, which displays a sorted list of user goals rankedby their probabilities. The �gure also highlights theintegration of a Bayesian analysis of words in a user'squery. Figure 8(a) displays a probability distributionover needs before a query is processed. This proba-bility distribution is computed solely from the user'sactions. Figure 8(b) displays an updated probabilitydistribution over needs. This distribution was createdby combining the Bayesian action analysis with theoutput of a Bayesian analysis of terms in the user'sfree-text query.If the main assistance interface is not displayed by theuser, the system will continue to infer the likelihooda user would like to be o�ered assistance. When theprobability that a user needs assistance exceeds a user-speci�ed threshold, a small window containing the in-ferred assistance is displayed.Figure 9 highlights Lumi�ere's autonomous assistance
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Figure 8: Folding in an analysis of a free-text query into ongoing inference about user needs. (a) Inference resultsbased on actions and (b) revised distribution considering additional information about terms in a user's query.mode. In the example, help was o�ered autonomouslyafter a user searched through multiple menus, se-lected the entire spreadsheet, and paused. The as-sistance window contains a \volume control" whichallows users to modify the probability threshold thatdetermines when the system will provide assistance.If the user does not hover over or interact with theautonomous assistance, the window will timeout anddisappear after a brief apology for the potential dis-traction. Recommendations for assistance are notedand the autonomous help will not be o�ered again un-til there is a change in the most likely topics. Beyonda user controlled probability threshold, we have ex-perimented with the use of a cost{bene�t analysis tocontrol the thresholds at which autonomous assistanceis provided, based on the preferences of the user for be-ing alerted.6.5 Beyond Real-Time AssistanceInformation about the usage of software can be learnedin a variety of settings. The context for most of Lu-miere research has been in the domain of real-timeassistance. However, there is opportunity for usingBayesian user models to design and tailor assistancefor o�ine review. Beyond providing assistance in realtime, Lumi�ere was endowed with the ability to trackin real-time patterns of weakness in skills for usinga software application. During a session, the sys-tem continues to monitor the likelihoods of user prob-lems. Lumi�ere/Excel tracks the frequency that dif-ferent problems are encountered during a session andmakes recommendations at the end of a session aboutinformation the user may wish to review o�ine. Weconsidered several approaches to identifying the con-tent for a custom-tailored o�ine tutorial. The method

employed in the Lumi�ere/Excel prototype considers,for each area of assistance that is not reviewed duringa session, the number of times that the probabilities ofuser needs for that area exceed a prede�ned probabil-ity threshold. Figure 10 demonstrates the automatedgeneration of recommendations for further reading byLumi�ere's help backgrounder.7 Components of Lumi�ere in the RealWorld: O�ce AssistantOur research team has worked closely with the Mi-crosoft O�ce division at implementing methods de-veloped in Lumi�ere research. The �rst phase of port-ing Lumi�ere to the real world occurred with the com-pletion of the O�ce '97 product suite, containing theO�ce Assistant. Figure 11 displays the interface forthe O�ce Assistant. As demonstrated in Figure 11,the O�ce team committed to a character-based frontend to relay the results of Bayesian inference. Com-pared with Lumi�ere/Excel, the O�ce Assistant em-ploys broader but shallower models reasoning up tothousands of user goals in each O�ce application. Thesystem uses a rich set of context variables that captureinformation about the current view and document.However, the system does not employ persistent userpro�le information and does not reason about com-petency. Also, the system does not use rich combi-nations of events over time. Rather, the system onlyconsiders a small set of relatively atomic user actions.Furthermore the system employs a small event queueand considers only the most recent events. The sys-tem also separates the analysis of words and of events.When words are available, the system does not exploitinformation about context and recent actions. Finally,



Figure 9: Autonomous display of assistance inLumi�ere/Excel. Shortly after a user searched throughseveral menus, selected the entire spreadsheet, andpaused, the system reaches a probability threshold andposts inferred assistance.
Figure 10: Inference about long-term needs.Lumi�ere/Excel observes patterns of needs in the back-ground and recommends topics for o�ine perusal atthe end of a session.the automated facility of providing assistance based onthe likelihood that a user may need assistance or onthe expected utility of such autonomous action was notemployed. Rather, the results of inference are availableonly when the user requests assistance explicitly. Weare continuing to work closely with the O�ce divisionand other product groups on the technology transferof more sophisticated implementations of Bayesian anddecision-theoretic user modeling.8 Ongoing Research on Bayesian UserModelingThe Lumi�ere/Excel prototype was useful for demon-strating and communicating key ideas on Bayesianuser modeling. However, the prototype includes a sub-set of functionalities that we have been exploring aspart of our research on user modeling. Key areas of on-going work on user modeling include harnessing meth-ods for learning Bayesian models from user log data,integrating new sources of events, and employing auto-mated dialog for engaging users in conversations aboutgoals and needs.

Figure 11: The O�ce Assistant. The �elded O�ceAssistant in the O�ce '97 suite of applications is basedon Lumi�ere research.New sources of events can enhance the abilities of auser modeling system to recognize goals and provideappropriate assistance. We have been pursuing oppor-tunities for integrating vision and gaze-tracking intouser modeling systems. Even coarse gaze informationsupplement mouse and keyboard actions with ongoingstreams of activity about the attention of a user toregions of a display.We have also been exploring the use of value-of-information computations to engage the user in dialogand to access costly information about user activityand program state. In the early days of Lumiere re-search, we experimented with the use of approxima-tions of value of information to consider the costs andbene�ts of evaluating previously unobserved variables.At any time in a session, value-of-information iden-ti�es previously unobserved variables that would bemost valuable to evaluate. In particular, rather thanrelying on inference to generate a probability distri-bution over user goals, we can simply ask users abouttheir goals and needs. Our work on Lumiere/Excelfocused on delivering applications that would simplywatch and \listen" for queries rather than making in-quiries. However, such dialog can be appropriate anduseful.9 Summary and ConclusionsWe described the Lumi�ere project with a focus on theLumi�ere/Excel prototype. We discussed our studieswith human subjects to elucidate sets of distinctionsthat are useful for making inferences about a user'sgoals and needs and our construction of Bayesian usermodels. We touched on issues, approximations, andassessment methods for the problem of making infer-ences from a stream of user actions over time. Wepresented a basic events-de�nition language and de-scribed an architecture for detecting and making useof events. We also presented our work to integrate ev-idence from actions and words in a user's query. Wereviewed work on autonomous decision making aboutuser assistance controlled by a user-speci�ed probabil-
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