
Real-Time Classification of

Everyday Fitness Activities on

Windows Mobile

By

Alireza Bagheri Garakani

A senior thesis submitted in partial fulfillment of

the requirements for the degree of

Bachelor of Science

With Departmental Honors

Computer Science & Engineering

University of Washington

June 2009

Presentation of work given on __

Thesis and presentation approved by _____________________________________

Date ___

Baghe r i Ga r akan i | 2

Abstract

Human activity recognition enables ubiquitous computing applications to leverage

knowledge of people's context. The ability to distinguish a small set of activities has

already shown the capacity to enable a wide range of important applications that

integrate with fitness/healthcare [1], environmental sustainability [2], and

entertainment [5]. However, the state-of-the-art in activity recognition is custom

hardware that can be expensive to build, difficult to maintain, and an additional item

for people to wear or carry around. Mobile phones provide an opportunity to augment

an existing device that people already carry with them throughout their daily lives. In

our work, we have implemented an activity classification system on the Windows

Mobile OS paired with the HTC Touch Diamond mobile phone. Our system uses a three-

axis accelerometer to classify human activities including running, walking, bicycling,

and sitting. It achieves considerable accuracy and a day's battery life.

Introduction / Motivations

Computing is growing ever more ubiquitous and context-aware. Systems falling into this

category are those that are capable of communicating among each other and that are

readily aware of their surroundings, including any individuals that may be present within

these surroundings. One example is a system that interprets an individual’s geographic

location during call initiation and connects the line to the appropriate phone number

(whether work, mobile, or landline) given personalized settings [3]. An important point to

observe is that although we may have once considered phone communication and GPS as

two distinct processes, this line of separation between these two processes is becoming

increasingly blurred and information is becoming more readily accessible among many

distributed devices.

Human activity classification is an important advancement in these efforts. Such systems

provide the capability to interpret a user’s activities with the use of sensors, which are

commonly distributed as a set of several sensors of various types (accelerometer, pressure,

GPS, RFID, etc). Undoubtedly, the future of intelligent computing will need to rely, at least

Baghe r i Ga r akan i | 3

partially, on a system’s ability to correctly classify a user’s activity and surroundings.

Consider a system that is capable of adjusting room lighting based solely on a user’s

activities that it interprets – perhaps upon sitting at ones desk the light would center

around the desk, upon sleeping the lights would turn off, upon waking up the lights would

gradually turn on, and upon dancing the lights would begin to strobe with different colors.

Once provided with the correct activity, such lighting operations could easily be set to

perform in response to each of the activities just described. The means of detecting these

activities (and ideally a much larger set of common activities), however, remains a difficult

problem to tackle.

A preliminary step in advancing such systems is considering a limited domain of possible

activities, perhaps composed of only a couple distinct values. This is an area that has thus

far seen much more success and, despite its domain-limited capabilities, it can be a part of

many important applications when integrated with areas such as: fitness/healthcare where

individuals are encouraged to engage in fitness activities [1], environmental sustainability

where individuals are encouraged to reduce use of public transportation [2], as well as for

entertainment purposes such as the Mario Fit application that allows gameplay based on

physical activity in lieu of a handheld controller [4]. This lattermost application of

entertainment can also be viewed as encouragement of the same fitness/health benefits

due to its interactivity [5].

Although certain custom hardware devices are made specifically for inferring activities,

they are typically expensive to build, difficult to maintain, and an additional item for people

to wear or carry around. It is thus no surprise that such efforts have not reached a

widespread audience, despite their proven feasibility and obvious potential. Better

hardware must be realized for activity inference that remedies the inadequacies of these

custom-made devices. In the case of activity inference, and especially for long-term

applications, it is further reasonable to consider a device that can at most times be assumed

to be carried around by the user. As such, mobile phones appear to be a plausible solution

for the choice of hardware. The internal accelerometer and GPS devices, which are

Baghe r i Ga r akan i | 4

increasingly common as built-in features of these phones, appropriately provide a plausible

means to infer activity.

This paper discusses the implementation of real-time activity inference on the Windows

Mobile platform using the HTC Touch Diamond mobile phone. Our system, which is based

on similar findings and implementation on the iPhone [4], is capable of accurately

classifying trained human activities, which can (as will be the case within this paper)

consist of running, walking, sitting, and biking. Activity models are learned using a

collection of features that are calculated based on samples from the 3-axis accelerometer.

These models then serve as a means for recognizing new activities based on data that is

collected in real-time.

I will begin by discussing some background work that was the basis of our motivation and

by addressing the closely related solution developed for the iPhone. I will then briefly

overview the three stages of our approach, which include logging data, creating models,

and classifying activities. Afterwards, I will discuss in greater detail our design choices and

architecture, as well as some challenges we faced. I will then provide results and a

discussion of the accuracy and robustness of our solution based on several experiments.

Finally, I will briefly discuss some possible paths for future work.

Background / Related Work

As previously mentioned, activity inference systems that distinguish between a few

discrete values have already been successful in the past,

although with specialized hardware. A subset of these

systems include the MSP belt-worn sensing device [6],

the eWatch wrist device [7], and the Nike+iPod Sport Kit

[8] seen respectively in Figures 1-3. All three systems

mentioned here can classify activities similar to those

which I propose within this paper – running, walking,

standing, etc.

Figure 1
An attachable belt-worn sensor

used as part of the MSP system

Baghe r i Ga r akan i | 5

Although all of these systems support activity inference, they have done so with a

dependence on custom-made hardware. This is a problem because

these devices are typically expensive to build and difficult to

maintain. Perhaps more importantly, these are items that must be

worn in addition to

others that the user may

be already wearing. In

some cases this may also

mean having to carry

around a device that

is awkward in

appearance and/or placement.

These limitations were recognized at the University of Washington and an effort to

implement activity recognition on a mobile device was undertaken by T. Scott Saponas,

Jonathan Lester, Jon Froehlich, James Fogarty, and James Landay. This effort was

successfully implemented on the iPhone mobile device, making use of the device’s three-

axis accelerometer. Their goal was based on the idea that “utilizing commodity devices for

activity inference provides researchers with access to robust, readily-available hardware

and potentially large preexisting user bases” [4]. Furthermore, to reinforce this claim, they

provided a set of open source tools for collecting, building, and running activity models that

could be incorporated into future application development.

As accelerometers become an increasingly popular component of mobile devices, it will be

necessary to expand this idea to other platforms in addition to the iPhone. Although work

is already being done to expand this idea to the Android platform, the issue has not yet

been addressed for the Windows Mobile platform, which is used by many mobile devices

on the market and is capable of supporting the very same activity inference techniques. In

order to further pursue the objective of providing activity inference capabilities based on

Figure 3
The �ike+ iPod sensor is placed in a person’s

shoe and communicates wireless to their iPod [9]

Figure 2
A sensor designed to

appear like a common

watch as used in the

eWatch system [8]

readily-available hardware and

researchers, it will be necessary to port this

Platform Overview

The activity classification system

represents a major step in the entire

these three stages are based on the same design decision

the iPhone. I will briefly discuss each of the three phases below

specific design and architectural components

the interface designs are purely for functional purposes and only demonstrate a

of the API that it is built upon; this point is

Logger Component

The logger component is used to collect data that

used for training a model. This data is represented in the

form of raw data and feature calculations

discussed in greater detail within the next section. This

user interface, which is shown in

of simple buttons that represent each of the possible

activities that the model will be trained on. It should be

noted that, although this particular interface contains

only four distinct activities, there is certainly no

limitation in using additional activities

different representation, such as drop

could be used in order to accommodate a larger set of activities.

Modeling Component

The modeling component is used to transform the data collected from the logger into a

model file that can be used for classification.

features that are calculated based on

Baghe r i Ga r akan i

available hardware and to encourage a potential for even larger user bases

s, it will be necessary to port this capability onto the Windows Mobile platform.

classification system consists of three separate phases, each of which

entire process. For sake of compatibility and consistency,

these three stages are based on the same design decisions made by the prior initiative for

I will briefly discuss each of the three phases below and save discussion of

design and architectural components for the next section. It should be noted that

the interface designs are purely for functional purposes and only demonstrate a

f the API that it is built upon; this point is further emphasized below.

to collect data that is later

This data is represented in the

form of raw data and feature calculations, which are

detail within the next section. This

user interface, which is shown in Figure 4, consists of a set

of simple buttons that represent each of the possible

activities that the model will be trained on. It should be

noted that, although this particular interface contains

only four distinct activities, there is certainly no

in using additional activities. Accordingly, a

different representation, such as drop-down menus,

could be used in order to accommodate a larger set of activities.

is used to transform the data collected from the logger into a

be used for classification. More specifically, it uses a collection of 72

based on logger data to construct a Naïve Bayesian

Figure 4

Our activity logger supports the few

chosen activities shown above,

however, support can easily be

extended to other activities.

Baghe r i Ga r akan i | 6

user bases for

onto the Windows Mobile platform.

, each of which

process. For sake of compatibility and consistency,

made by the prior initiative for

discussion of

t should be noted that

the interface designs are purely for functional purposes and only demonstrate a simple use

is used to transform the data collected from the logger into a

collection of 72

to construct a Naïve Bayesian classifier,

Figure 4
Our activity logger supports the few

chosen activities shown above,

however, support can easily be

extended to other activities.

which was the machine learning

inexpensive and thus “allows a potentially large number of applications on a mobile phone

to each classify among a different set of activit

the other two phases (logger and classifier)

and, thus, it does not run on the mobile device.

from the iPhone initiative (called iModel)

component as it runs on a desktop and is

is a Java application built on the Weka machine learning toolkit

models of data, it contains other

validating that models built with data from several people correctly classify data from a

new person” [4]. This hold-one

within the “Evaluation and Discus

Classification Component

The real-time classification component

reading raw sensor values and using

from these raw values in conjunction with the

constructed in the previous phase

activity. The API is constructed such that applications

can request event notifications when new activities are

classified. The user interface of the application, seen in

Figure 5, shows two separate fields for classification

updates – one for instant updates and one for smooth

updates. The instant updates represent each indiv

classification that is made, whereas the smooth updates

represent the most common individual classification over an adjustable

This smooth activity is optionally

previous classifications by day

was mentioned for the logger, the interface demonstrates

the API offers but it is certainly not restricted to

Baghe r i Ga r akan i

learning algorithm of choice because it is computationally

allows a potentially large number of applications on a mobile phone

to each classify among a different set of activities simultaneously in real-time”

(logger and classifier), the modeling phase is a desktop

the mobile device. Because a similar modeling tool

(called iModel) [4], there was no need to re-define

it runs on a desktop and is therefore compatible with our solution

built on the Weka machine learning toolkit. In addition to creating

other features such as hold-one-out tests, which “

validating that models built with data from several people correctly classify data from a

one-out test will be used to evaluate the accuracy of

and Discussion” section of this paper.

Component

component is responsible for

reading raw sensor values and using features calculated

in conjunction with the model

constructed in the previous phase to produce an inferred

API is constructed such that applications

t notifications when new activities are

ed. The user interface of the application, seen in

two separate fields for classification

one for instant updates and one for smooth

updates. The instant updates represent each individual

classification that is made, whereas the smooth updates

ndividual classification over an adjustable interval

activity is optionally uploaded to a web server that displays a history of

 and constructs a visual graph, as shown in Figure 6

mentioned for the logger, the interface demonstrates the primary functionalities

tainly not restricted to the format shown in the figure

Figure 5

Smooth activities can also be

calculated using several different

update intervals, as shown above.

Baghe r i Ga r akan i | 7

it is computationally

allows a potentially large number of applications on a mobile phone

time” [4]. Unlike

desktop application

a similar modeling tool was built

define this

compatible with our solution. This tool

. In addition to creating

, which “are useful for

validating that models built with data from several people correctly classify data from a

used to evaluate the accuracy of our system

interval of time.

to a web server that displays a history of

igure 6. Also, as

functionalities that

shown in the figure. Finally,

Figure 5
Smooth activities can also be

calculated using several different

update intervals, as shown above.

Baghe r i Ga r akan i | 8

there are several

additional parameters

that can change the effects

of activity classification;

these variables (such as

the smoothing factor, raw

data re-use, etc.) are

discussed in more depth

within later sections.

Design Considerations and Architecture

To better present the inner workings of our system, I will first discuss in greater detail the

input, output, and processes that are involved within the logger and classification

components. Secondly, I will discuss three significant challenges that arose in our

transition to the Windows Mobile platform, including the (1) accelerometer usage and

limitations, (2) feature calculation and activity extraction through P/Invoke methods, and

(3) locking the screen and battery management.

Logger Component - Revisited

Our solution contains two individual loggers (the accelerometer and the GPS) and provides

support for easy expansion to other sensors with the use of high-level abstract classes.

These abstract classes are denoted as SensorLogger and PollingSensorLogger; the former is

designed for implementations where an event notification from the device is expected

when new data is available (as in the GPS device), while the latter includes a timer object to

poll the device at some constant interval (as in the accelerometer device). Each logger

operates on logger sensor events that are specific to that logger and that are used to

require certain types of data that are specific to that sensor. This process will be made

more concrete shortly. This sensor logger is abstracted from the high-level SensorEvent

class and implemented by each sensor.

Figure 6
Data uploaded to the web server can be used in many ways, one

of which includes creating a graph representation.

The accelerometer logging components are

which conform to the description

sample obtained via a periodic timer, a new

output buffer using the high-level

the raw data values for each axis, the activity label indicated by the client, and a timestamp

– this is shown in Figure 7.

Because we want to also make

available the features based on

this raw data, the

AccelerometerLogger contains

functionality to output a second

file designated for feature

computation results. This process

AccelerometerLogger class. The format of this data, whose derivation and individual

The GPS logging components, GpsLogger

the accelerometer. In particular, new data is sampled whenever an event is thrown (as

opposed to using a periodic timer) and there is no feature computation that is used.

GpsEvent contains: latitudinal and longitudinal values, vertical and horizont

the sea-level altitude, the

user-specified activity, and

a timestamp – this is

shown in Figure 9.

Figure 8

For each entry there is a total of 72 features, a subset of

which are shown above.

Baghe r i Ga r akan i

The accelerometer logging components are AccelerometerLogger and AccelerometerEvent

conform to the description of the API just provided. With each new accelerometer

odic timer, a new AccelerometerEvent is created and added to an

level AddSensorEvent method. AccelerometerEvent

for each axis, the activity label indicated by the client, and a timestamp

make

based on

a second

process is implemented as a separate thread within the

class. The format of this data, whose derivation and individual

components are discuss

later, contains

extensive set of values; a

portion of this output is

shown in F

GpsLogger and GpsEvent, function in much of the same

the accelerometer. In particular, new data is sampled whenever an event is thrown (as

opposed to using a periodic timer) and there is no feature computation that is used.

contains: latitudinal and longitudinal values, vertical and horizont

Figure 7
Raw values of the accelerometer are based on units of

gravity (i.e., placing the device on a table

magnitude of 1 for the up-and-down axis)

Figure 8
For each entry there is a total of 72 features, a subset of

which are shown above.

Figure 9

Raw GPS values are collected directly from the device, similar

to the accelerometer, and calculation were necessary.

Baghe r i Ga r akan i | 9

AccelerometerEvent,

With each new accelerometer

is created and added to an

AccelerometerEvent contains:

for each axis, the activity label indicated by the client, and a timestamp

ad within the

class. The format of this data, whose derivation and individual

components are discussed

contains a fairly

extensive set of values; a

portion of this output is

Figure 8.

, function in much of the same way as

the accelerometer. In particular, new data is sampled whenever an event is thrown (as

opposed to using a periodic timer) and there is no feature computation that is used. The

al DOP values,

Raw values of the accelerometer are based on units of

gravity (i.e., placing the device on a table top will show a

down axis)

collected directly from the device, similar

to the accelerometer, and calculation were necessary.

Classification Component

The classification procedure shares a similar hierarchical structure as the loggers

implements the SensorLogger and

activities are being logged

to file. The events that

carry this classification

data contain: a timestamp

of the classification,

specification of either

instant or smooth activity

type, the classified activity

label, and the distribution

(which is non-empty only for smooth classification)

Unlike the logging tool, the classification tool contains several options that can alter how

activities are classified. Firstly, it will be necessary to

instant or smooth classification updates

classification that is made. Depending on the amount of data that is used per feature

calculation (see later discussion within this section

different intervals. However, assuming the default settings of 128 data entries used per

feature calculation and a 25 Hz accelerometer sampling rate, new instant activities are

classified about every 5 seconds.

Smooth activities, on the other

within a collection of consecutive instant

people do not change their activities every 5 seconds, but instead do

intervals of time. Therefore, it would appear that

most practical purposes. A benefit of smooth classification is that it is

false classifications and can thus

provides a smooth transition of activit

Baghe r i Ga r akan i

Component - Revisited

shares a similar hierarchical structure as the loggers

and SensorEvent abstract classes, except here

for smooth classification) – this is shown in Figure

Unlike the logging tool, the classification tool contains several options that can alter how

, it will be necessary to readdress the distinction bet

classification updates. Instant updates represent each individual

Depending on the amount of data that is used per feature

discussion within this section), instant activities are update

ssuming the default settings of 128 data entries used per

feature calculation and a 25 Hz accelerometer sampling rate, new instant activities are

every 5 seconds.

Smooth activities, on the other hand, consist of taking the activity with the majority

a collection of consecutive instant activities. This idea is motivated by the fact that

people do not change their activities every 5 seconds, but instead do so over

it would appear that smooth activities are more

A benefit of smooth classification is that it is not hurt by

thus provide better overall accuracy. Our approach also

provides a smooth transition of activities by using a half-blend technique where only the

Figure 10

The classification log file is very simple. For Smooth activities, as

the one shown above, the distribution of instant activities is

provided in the right-most field.

Baghe r i Ga r akan i | 10

shares a similar hierarchical structure as the loggers, in that it

 the inferred

igure 10.

Unlike the logging tool, the classification tool contains several options that can alter how

the distinction between

Instant updates represent each individual

Depending on the amount of data that is used per feature

updated at

ssuming the default settings of 128 data entries used per

feature calculation and a 25 Hz accelerometer sampling rate, new instant activities are

majority count

This idea is motivated by the fact that

over larger

more applicable for

not hurt by a few

. Our approach also

blend technique where only the

The classification log file is very simple. For Smooth activities, as

the distribution of instant activities is

most field.

Baghe r i Ga r akan i | 11

first half of the collection set is removed after each classification (as opposed to the entire

collection). A configurable option for smooth classification is the window size, the number

of consecutive instant activities to consider. To illustrate this concept, the smallest window

size represents each instant activity itself; on the other hand, a very large window size, say

the length of one day, represents the most frequently occurring activity within the

timeframe of the last 24 hours.

One additional configuration option that pertains to both instant and smooth updates is the

amount of accelerometer raw data re-usage through blending, which has the ability to

encourage a higher rate of classification by some constant factor. Because the variable

representing the amount of raw data per feature calculation must remain constant from the

logging phase to the classification phase in order to maintain a consistent number of

feature frequency values (as discussed later in this section), the only approach for

increasing the classification rate is to re-use data in each FFT calculation. This allows the

classification tool to compute features at a higher rate than the logger, if desired. To

illustrate this point, assuming the default settings of 128 data entries used per feature

calculation and a 25 Hz accelerometer sampling rate, new instant activities are updated

every 5 seconds when using a data-reuse factor of 1 and every 2-3 seconds using a data-

reuse factor of 2. Accordingly, smooth classifications contain many more instant activities

to consider and this has the potential to improve classification results.

It should be mentioned that instant and smooth activities are both implemented in our

approach by default. To make use of either (or both) activity types, it is only necessary to

request notifications for each corresponding event.

Accelerometer Usage and Limitations

The built-in accelerometer of the mobile phone provided several challenges, including

accessibility of the data and a limitation on the polling frequency. As is common for such

devices in mobile environments, tools to access and control the accelerometer were not

readily provided by the manufacturer. Luckily, as others too had encountered such

Baghe r i Ga r akan i | 12

restrictions, there were many resources and workarounds available online. Based on work

started by Scott Seligman and later expanded by Koushik Dutta [10, 11], the raw data

values from the accelerometer could be accessed in C# or C/C++ by calling the native

functions of the mobile device. The second challenge was much more substantial. After

experimenting with the device, it became clear that there was a 25 Hz limit on the

frequency at which new values could be requested from the accelerometer.

Experimentation showed that with higher requests values would begin to repeat for

consecutive entries and at other times no entry would even exist. After several failed

attempts to increase this limitation via different built-in C# polling techniques (e.g., using

System.Timers.Timer, System.Threading.Timer, a combination of the DateTime structure &

Thread.Sleep method, etc.), I considered the option of polling within unmanaged C++ code

and then making some buffered collection of this data accessible to C# via P/Invoke

methods. This was motivated by the fact that crossing the boundary between managed and

unmanaged code can have negative consequences on performance speed. Thus, it was

hoped that higher polling frequencies could be achieved by crossing this boundary once for

each collection of 120 data values (instead of once for each data value). The results of this

approach, however, proved closely comparable with the 25 Hz limit. A final attempt was

made by modifying various registry values of the device to attempt to achieve greater

frequency. Despite locating some promising registry keys, there was no meaningful

increase to the frequency limit after changes were made.

The desire to exceed this limit was based on the 120 Hz polling frequency that was used on

the iPhone implementation. Thus, it was understood that this would provide better results.

It would turn out, however, that sampling at 25 Hz was sufficient for our needs. This

sufficiency can be assessed within the ‘Evaluation and Discussion’ section of this paper,

where we also compare with results from the iPhone implementation.

Feature Calculation & Activity Extraction through P/Invoke

Models learned within the second phase of our system are based on the accelerometer

feature calculations. It should be noted, however, that our implementation is compatible

Baghe r i Ga r akan i | 13

with any feature choice, whether related to the accelerometer or not. Each feature

computation is based on 128 raw accelerometer entries, by default. For each calculation,

we identified 24 distinct features per axis, for a total of 72 features. For each axis, features

can be categorized into two categories – magnitude features and frequency features. The

former consists of 5 features and includes the mean, standard deviation, minimum value,

maximum value, and max-minus-min value. The latter consists of 19 features and is the

result of computing a 256 point Discrete Fourier Transform (DFT), which includes “one

feature for the energy in each of the first 10 frequency components, a feature for the energy

in each band of 10 frequency components, the value of the largest frequency component,

and the index of the largest frequency component” [4]. These DFT values are capable of

showing the periodic sensor changes that occur when performing activities, and it makes

this information explicit by converting its representation from the time domain to the

frequency domain. Figure 8 shows a glimpse of this combination of both feature types

together within a log file. Finally, activity extraction is based on the Naïve Bayes model that

is created in the modeling phase in conjunction with the real-time feature calculations that

are made during the classification phase.

Feature choice and methods for calculating them, as well as activity extraction techniques,

are not platform-specific concepts and are thus taken directly from the solution for the

iPhone. As such, it was not necessary to reconsider or re-implement these components.

Because feature calculation and activity extraction are based on C/C++ code, however, it

was necessary to export this functionality for use within our C# environment. As such, it

was necessary to call native code (C/C++) from managed code (C#), which means using

P/Invoke (Platform Invocation Services) techniques in C# to call unmanaged DLL files

compiled in C/C++. This, however, is a lot easier said than done. While there are endless

resources and examples online, there are many limitations to the types of data that can

cross this boundary. Different workarounds were needed in each particular instance. For

example, if we wanted to access a global variable within native code, these variables along

with any needed functions had to be encapsulated within a DLL-exported C++ class.

Additionally, this required DLL-exported C++ methods to return a pointer to a new

instance of the class, to call specific class methods when given a class pointer, and to return

Baghe r i Ga r akan i | 14

the content of any global variables when given a class pointer. Essentially, within C# a

pointer to a particular instantiation of the C++ class is used whenever referencing the

native object’s methods or variables – this technique was used for activity inference (see

project libClassify). In another case, P/Invoke was necessary to access the C/C++ KissFFT

library, which was used for calculating the frequency features (see project libKissFFT).

Locking Screen and Battery Management

It was known from the beginning that locking the screen would be necessary for these

mobile-based applications – both for the logging tool and the classification tool. After

experimentation it became clear that some period of time after locking the device (either

explicitly via the pressing the power button or after some time of inactivity), Pocket PCs

(which our particular device is) will transition into a system state that disables access to

the accelerometer device and does not allow certain applications to run in the background.

Based on previous work by Jon Froehlich and various other resources online, it became

clear that the proper solution to keeping this device and our application available was to

periodically call SystemIdleTimerReset, a windows native function to explicitly reset the

timer that is used to notify the system when to transition into a suspended state.

Furthermore, to insure that the internal accelerometer device is kept active for the

duration it is needed, the native function SetPowerRequirement was used to explicitly

indicate this device and to set the desired ON power setting associated with it.

Although the accelerometer device was now accessible to the application the entire time, a

new problem had emerged; the device was constantly in a state that kept the device screen

powered on (though it should be noted that this is different from the back light, which

would automatically turn off). This had two negative consequences; firstly, this would

mean the device screen would also be unlocked and thus the client could not safely put the

device within their pockets; secondly, this system state would certainly drain the battery

power quickly and reduce the applicability of this solution as a whole. To solve this

problem, native function SetSystemPowerState was used to instruct the device to transition

into the more appropriate UNATTENDED state (as opposed to SUSPENDED state), which

allows applications and devices to run in the background with the screen off and locked.

Figure 11 gives a more detailed descri

state is forced when either it is

instructed to do so by the UI

via the “Display Off” button or

some specified time after

transitioning to the

BACKLIGHTOFF state.

The outcome of having both

these solutions simultaneously

is as desired. Calling

SystemIdleTimerReset and

SetPowerRequirement will

ensure the accelerometer

device is active for the entire

duration of the application.

When the screen is inactive,

the back light will

automatically turn off and

within the next 10 seconds (by default)

UNATTENDED state – this situation can be closely compared to the normal situation wh

the device enters SUSPENDED state after some time of inactivity, except here it instead

transitions to the more useful UNATTENDED state.

client has explicitly requested the device screen to be turned off

up this very same process. The ‘Display Off’ icon can be

instance.

Baghe r i Ga r akan i

allows applications and devices to run in the background with the screen off and locked.

gives a more detailed description of each system state [11]. This system power

when either it is

these solutions simultaneously

10 seconds (by default) this will trigger a force of the device into

this situation can be closely compared to the normal situation wh

SUSPENDED state after some time of inactivity, except here it instead

UNATTENDED state. Another trigger for this can be when

client has explicitly requested the device screen to be turned off, which essentially speeds

up this very same process. The ‘Display Off’ icon can be seen at the bottom of Figure 4, for

Figure 11
Pocket PCs (which our device was) transition between various

device power states. In our solution, we had to avoid

transitioning to the ‘Suspended’ state, as shown above.

Baghe r i Ga r akan i | 15

allows applications and devices to run in the background with the screen off and locked.

This system power

he device into

this situation can be closely compared to the normal situation where

SUSPENDED state after some time of inactivity, except here it instead

can be when the

, which essentially speeds

seen at the bottom of Figure 4, for

device was) transition between various

device power states. In our solution, we had to avoid

transitioning to the ‘Suspended’ state, as shown above.

Evaluation and Discussion

To assess whether this solution was applicable to

classification, we conducted two experiments

and the other pertaining to its accuracy and performance.

Robustness Experiment

For the robustness experiment

classification update intervals in an attempt to evaluate

to the web server. These components were measured by referring to two log files at the

end of each trial – the classification log file (shown in Figure

file (shown in Figure 12). This latter file was

specifically added to measure the number of

connection attempts that were successful over

the total number attempted. The

file is simple; it contains: a timestamp, the

type of activity that is uploaded

smooth), and an indication of either success

or failure.

Each trial was conducted with the battery being completely charged. The battery life was

measured by looking at the start and end times of the classification log file, and the

connectivity was measure by considering the percentage of successful

web server. The connectivity of the system was perfect in three of the four

server updates enabled; one trial

connectivity (14 failures among 168 attempts), however, this was due to

area with little or no cellular reception. As such, it appears connectivity is reliable as long

as cellular service is available. Within the ‘Future Work’ section we evaluate some

extensions to improve this percentage

Baghe r i Ga r akan i

Discussion

whether this solution was applicable to the initial goals we set for activity

classification, we conducted two experiments – one pertaining to the solution’s robustness

and the other pertaining to its accuracy and performance.

robustness experiment several trials were conducted using different activity

in an attempt to evaluate the battery life and

to the web server. These components were measured by referring to two log files at the

the classification log file (shown in Figure 10) and the connectiv

This latter file was

specifically added to measure the number of

connection attempts that were successful over

The format of this

is simple; it contains: a timestamp, the

uploaded (instant or

smooth), and an indication of either success

was conducted with the battery being completely charged. The battery life was

measured by looking at the start and end times of the classification log file, and the

connectivity was measure by considering the percentage of successful transmissions

The connectivity of the system was perfect in three of the four trials

server updates enabled; one trial with 5 minute smoothing updates experienced

connectivity (14 failures among 168 attempts), however, this was due to walk

area with little or no cellular reception. As such, it appears connectivity is reliable as long

as cellular service is available. Within the ‘Future Work’ section we evaluate some

extensions to improve this percentage within these limited service areas.

Figure 12
The connectivity log file indicates whether

application could upload to the web server at

the specified timestamp.

Baghe r i Ga r akan i | 16

set for activity

solution’s robustness

were conducted using different activity

 the connectivity

to the web server. These components were measured by referring to two log files at the

) and the connectivity log

was conducted with the battery being completely charged. The battery life was

measured by looking at the start and end times of the classification log file, and the

transmissions to the

trials that had

experienced about 92%

walking within an

area with little or no cellular reception. As such, it appears connectivity is reliable as long

as cellular service is available. Within the ‘Future Work’ section we evaluate some easy

The connectivity log file indicates whether the

could upload to the web server at

timestamp.

Baghe r i Ga r akan i | 17

As for the issue of battery life, Figure 13 illustrates the effect on battery life using the

following smooth upload intervals: 3 seconds, 1 minute, 2 minutes, and 5 minutes. This

range of values provides a good lower and upper bound on what is practical for most

activity inference applications. Table 1 shows a slightly different aspect of battery life; it

illustrates the effect on battery life under different connectivity environments. These

experiments were done to analyze whether successful or failed connections change the

overall usage of battery, where upload rate was kept the same at 5 minutes. Finally, results

are also shown from an experiment where uploads were disabled as a whole.

Figure 13

Illustrates results from four experiments to evaluate battery life using various upload rates.

Battery Life Under Various Connectivity Environments

Experiment Connectivity Environment Battery Life (Hours)

1 Perfectly Successful Uploads 16

2 Perfectly Failed Uploads (airplane mode) 20.75

3 Disabled Uploads 23.5

Table 1

When avoiding connection attempts, either due to internet unavailability or disabling updates to

the web server, there is a considerable improvement in battery life, as the data above illustrates.

4

6

8

10

12

14

16

18

0 60 120 180 240 300

B
a

tt
e

ry
 L

if
e

 (
H

o
u

rs
)

Upload Interval (Seconds)

Battery Life Using Various Upload Rates

Baghe r i Ga r akan i | 18

The data from Figure 11 shows that with a small upload interval (and therefore a large

number of attempted uploads), battery life is depleted relatively quickly. In fact, it is pretty

safe to say that 6 hours is too short of a battery life for most purposes. Updating every 5

minutes, on the other hand, results in almost three times the battery performance. Data

from Table 1 reinforces this hypothesis as it shows that when the phone modem is disabled

(airplane mode), causing all updates to result in a failure, there is a 30% increase in battery

life. Better yet, when uploads are disabled completely (and thus never attempted in the

application) there is a 47% increase from the original 16 hours to nearly 24 hours. The

current performance of the battery life appears practical for most applications. Without

focusing too greatly on battery types and phone-specific details, these results currently

outperform those of the iPhone and Android mobile platforms, which run at 6 hours and 10

hours under normal conditions, respectively.

As reference, in one experiment with the screen lock and the battery management settings

in effect but without the classification application running on the phone, battery life expired

after 7 days. This result, being nearly 6 days longer than when the application was running

with uploads disabled, shows the enormous effect on battery life from repeatedly sampling

the accelerometer at 25 Hz. In the ‘Future Work’, however, I will discuss some ways to

optimize battery use even further.

Classification Accuracy Experiment

To evaluate the accuracy of our system, data was collected from 5 male and female

students between the ages of 18 – 22. Data was collected for each individual while the

participant performed approximately 3 minutes each of the following activities: walking,

jogging, bicycling on a stationary bike, and sitting. Cross-validation tests were performed

where for each participant we conducted a hold-one-out test. Table 2 shows a confusion

matrix that combines the hold-one-out tests of all participants.

Baghe r i Ga r akan i | 19

Confusion Matrix from Hold-One-Out Test Results

Classified As

Biking Running Sitting Walking

Ground

Truth

Biking 122 0 2 14

Running 0 152 0 1

Sitting 4 0 121 0

Walking 30 17 0 103

Table 2

The diagonal with the largest values illustrate that classification accuracy was relatively

high. Misclassifications did occur within our data, however, most commonly between

Biking and Walking.

This data makes transparent the frequency at which two activities were ‘confused’ during

the cross-validation testing. In particular, the activity of Biking and Walking were often

misclassified as one when it really was the other – in fact, this occurred in nearly 15% of

our data. On the other hand, correct classifications (represented by the diagonal where

each activity meets itself) were made in about 88% of our data. Table 3 illustrates the

percentage of correct classifications for each individual participant when validated with the

model built from data gathered among all other participants.

Percentage of Correct Classifications for Each Participant

 Percentage (%)

Participant 1 99.2

Participant 2 93.0

Participant 3 65.6

Participant 4 97.5

Participant 5 79.5

Table 3

Hold-one-out tests conclude that data from Participant 3 was substantially different from the

other participants, while Participant 1 experienced nearly perfect validation.

Baghe r i Ga r akan i | 20

This data reveals some important information from our experiment. In particular, it

appears that much of our misclassification was related to the data from the third

participant. Without the ability to extensively review this circumstance, one would predict

that this is because the data was either erroneously logged during this trial or simply that

the model based on the other four individuals was not a complete-enough description of

the activities. Consequently, in order to improve overall accuracy, one would be

encouraged to re-evaluate these percentages after incorporating an additional set of

participants and/or performing a more controlled experiment that requires participants to

follow designated routes and wear particular types of clothing to regulate how the device is

held in the pocket. The accuracy results for the iPhone solution, which implemented

stricter control in their experiments similar to those just described, achieved nearly perfect

classification accuracy and, thus, serves as a good model to follow for subsequent rounds of

experimentation.

Because we could not overcome the 25 Hz accelerometer polling frequency in our design

and were thus concerned with how this would affect our results, our accuracy results were

quiet pleasing to discover. Although we will make some suggestions for the accelerometer

in the ‘Future Work’ section, it does not appear necessary to modify use of the

accelerometer to achieve better classification. There remain several of options to tweak

and to consider: better machine learning, better choice of features, etc. Therefore, based on

the results of our experiment, it does not appear that the accelerometer polling frequency

is necessarily the sole difficulty that needs to be solved in order to increase accuracy

results. Our results in general were quite pleasing given that this was only our first

implementation. We discuss some future work for our solution in the next section.

Future Work

Though we have successfully implemented activity classification on our mobile phone,

there is certainly much more work that can be done. Some of these ideas arose throughout

the course of our design and could not be addressed due to lack of time, while others arose

after considering our evaluation results as discussed above.

Baghe r i Ga r akan i | 21

One idea is to sleep the device during time when activity can be inferred as constant. This is

based on the idea that people do not change activities every 5 seconds, but takes this idea

even further to say that sometimes (though not always) people will not change their

activity for hours. With this said, consider when a person has been sitting for a few hours; if

we can detect that there is no change taking place, we can gradually reduce the frequency

at which computations are being made (i.e., reduce accelerometer sampling rate, etc.). This

solution seems feasible since we can use the smoothing window to determine the accuracy

at which an activity is classified each time. If an activity is classified with a high percentage

(perhaps even on a few successive iterations of smooth updates), then we could possible

detract from regular sampling. We could expect perhaps a small tradeoff in accuracy for a

large increase in battery life.

Another important task for future work is considering how our solution performs on other

Windows Mobile phones, since we only tested with the HTC Touch Diamond. On a similar

note, it would be also worthwhile to experiment with the upcoming Windows Mobile 7

operating system. These two items will be necessary to assure we have addressed the issue

for a range of potential Windows Mobile devices.

Finally, there are a number of improvements that were brought to our attention after our

evaluation experiments. One idea is re-tackle the effort to improve the accelerometer

sampling rate. While, as we concluded before, this is not necessary an essential step needed

to improve performance, it is nonetheless worthwhile to evaluate changes in performance

using higher frequencies. Connectivity too could be expanded such that it does not suffer

within areas that do not have strong cell service. Using the wireless capabilities of the

phone, if present, we can ensure a better overall connectivity percentage.

Conclusion

Activity inference has many important applications and is already being integrated in many

different fields. For the class of problems that distinguish between a few different activities,

Baghe r i Ga r akan i | 22

systems often suffer from various downfalls that accompany use of custom-made

hardware. Using mobile phones as the answer to this hardware question allows developers

interested in this technology, including researchers at universities or elsewhere, to readily

have access to activity inference functionality. Taking a step towards achieving this goal,

our solution contains a carefully structured and clearly commented API that allows for

flexibility throughout each of the three steps of our system – collecting data, creating

models, and classifying activities. Our results were favorable, especially for being our first

implementation. Still, as the next step there are certainly many improvements that can be

made as well as extensions (perhaps to additional sensors) to further increase functionality

and make our system applicable to an even larger scope of applications.

Acknowledgements

This research could not have been possible without the constant assistance and

suggestions of a few notable individuals, including Professor James Fogarty, Professor

James A. Landay, T. Scott Saponas, Jon E. Froehlich, Jonathan Lester, and Microsoft

Corporation for providing the mobile phone.

References

1. Consolvo, S., McDonald, D., Toscos, T., Chen, M., Froehlich, J., Harrison, B., Klasnja, P.,

LaMarca, A., LeGrand, L., Libby, R., Smith, I., & Landay, J.. Activity Sensing in the Wild: A

Field Trial of UbiFit Garden, In Proceedings of CHI 2008, ACM Press.

2. Froehlich, J., Dillahunt, T., Klasnja, P., Mankoff, J., Consolvo, S., Harrison, B., Landay, J.

UbiGreen: Investigating a Mobile Tool for Tracking and Supporting Green

Transportation Habits, Conference on Human Factors in Computing Systems, 2009.

3. Cisco Systems. Redefining Mobile Applications: Mobility Services and the Unified

Network. Farpoint Group White Paper, May 2008.

4. Saponas, S., Lester, J., Froehlich, J, Fogarty, J., Landay, J. iLearn on the iPhone: Real-Time

Human Activity Classification on Commodity Mobile Phones. CSE Technical Report ,

University of Washington, 2008.

Baghe r i Ga r akan i | 23

5. Campbell, T., Ngo, B., and Fogarty, J. (2008). Game Design Principles in Everyday Fitness

Applications. Proceedings of the ACM Conference on Computer Supported Cooperative

Work (CSCW 2008), pp. 249-252.

6. Choudhury, T., Borriello, G., Consolvo, S., Haehnel, D., Harrison, B., Hemingway, B.,

Hightower, J., Klasnja, P., Koscher, K., LaMarca, A., Lester, J., Landay, J., Legrand, L.,

Rahimi, A., Rea, A., & Wyatt, D., The Mobile Sensing Platform: An Embedded System for

Capturing and Recognizing Human Activities, In IEEE Pervasive Computing, vol. 7, no. 2.

7. Rowe, A., Smailagic, A., & Siewiorek, D., Location and activity recognition using eWatch:

A wearable sensor platform, In Ambient Intelligence in Every Day Life. Springer (2006).

8. Apple. Nike + iPod Kit. http://www.apple.com/ipod/nike/

9. Seligman, Scott. Fun with the Diamond's Tilt Sensor.

http://scottandmichelle.net/scott/comments.html?entry=784

10. Dutta, Koushik. My Brain Hurts Using HTC Touch Diamond's Accelerometer-Sensor SDK

from Managed Code. 2008. http://www.koushikdutta.com/2008/07/using-htc-touch-

diamond-sensor-sdk-from.html

11. MSDN. System Power States. Microsoft Corporation, 2008.

http://msdn.microsoft.com/en-us/library/aa930499.aspx

