
The Java Context Awareness Framework (JCAF) – A
Service Infrastructure and Programming Framework

for Context-Aware Applications

Jakob E. Bardram

Centre for Pervasive Healthcare,
Department of Computer Science, University of Aarhus,

Aabogade 34, DK–8200 Aarhus N., Denmark
bardram@daimi.au.dk

Abstract. Context-awareness is a key concept in ubiquitous computing. But to
avoid developing dedicated context-awareness sub-systems for specific applica-
tion areas there is a need for more generic programming frameworks. Such frame-
works can help the programmer develop and deploy context-aware applications
faster. This paper describes the Java Context-Awareness Framework – JCAF,
which is a Java-based context-awareness infrastructure and programming API
for creating context-aware computer applications. The paper presents the design
goals of JCAF, its runtime architecture, and its programming model. The paper
presents some applications of using JCAF in three different applications and dis-
cusses lessons learned from using JCAF.

1 Introduction

The idea of context-aware computing was one of the early concepts introduced in some
of the pioneering work on ubiquitous computing research [28, 27, 13] and has been
subject to extensive research since. ‘Context’ refers to the physical and social situation
in which computational devices are embedded. The goal of context-aware computing is
to acquire and utilize information about this context of a device to provide services that
are appropriate to the particular setting. For example, a cell phone will always vibrate
and never ring in a concert, if it somehow has knowledge about its current location and
the activity going on (i.e. the concert) [22].

This paper presents the Java Context-Awareness Framework – JCAF. The goal of
JCAF is to provide a Java-based, lightweight framework with an expressive, compact
and small set of interfaces. The purpose is to have a simple and robust framework,
which programmers can extend to more specialized context-awareness support in the
creation of context-aware applications. Several projects have already been undertaken
using JCAF, as discussed in section 6.

The paper starts by motivating JCAF and introduces the main design principles. Sec-
tion 3 presents the JCAF runtime infrastructure and section 4 presents the programming
model. Section 5 discusses the current implementation status of JCAF and the ongoing
work based on the lessons learned so far. Section 6 presents how JCAF has been used
and evaluated and presents two specific projects, discussing in detail how JCAF was

H.W. Gellersen et al. (Eds.): PERVASIVE 2005, LNCS 3468, pp. 98–115, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



The Java Context Awareness Framework (JCAF) 99

used and conceived by programmers using JCAF. Section 7 discusses related work and
section 8 concludes the paper.

2 Motivation and Design

A common goal for programming frameworks for context-aware computing is to enable
programmers to easily develop and deploy context-aware applications. Programmers
can focus on modeling and using context information and functionality specific for their
application while relying on a basic infrastructure to handle the actual management and
distribution of this information. Requirements for context-awareness systems and/or
frameworks have been widely discussed and described [11, 17, 15, 14, 16, 1, 8, 3].

JCAF incorporates many of the lessons from these previous contributions. But JCAF
is also distinctive in at least three ways: (i) JCAFs service-oriented infrastructure is
a distributed system based on the idea of dividing context acquisition, management,
and distribution in a network of cooperating context services; (ii) JCAF embodies a
general-purpose, robust, modifiable, event-based, secure architecture; and (iii) JCAF
has a generic, extensible, and expressive Java programming model for the deployment
and development of context-aware applications and context models.

The three distinctive features have emerged out of our analysis of the existing pro-
posed context-awareness frameworks as well as from our empirical work within health-
care [3, 4]. In section 7 we shall discuss in more details how JCAF differs from the other
related middleware support for context-aware applications.

2.1 Federated Context Services

The infrastructure of JCAF relies on having a set of distributed context services that
cooperate in a loosely coupled peer-to-peer fashion. A context service is often dedicated
to a specific purpose. For example, a context service might run in an operating room,
handling specific context information in this setting, like who is there, what are they
doing, who is the patient, and what is the status of the operation. This context service
cooperates with context services in other parts of a hospital. Most context management
is specific for the operating theatre, but occasionally it might become relevant to contact
services running in the rest of the hospital. Therefore, the JCAF infrastructure consists
of a network of loosely coupled context services, which cooperate in a peer-to-peer or
hierarchical fashion. The exact topology of the context services are designed to fit the
specific deployment of JCAF in a certain application.

2.2 Modifiable, Event-Based and Secure Architecture

A core software architecture quality [6] of JCAF is modifiability, i.e. support for adding,
deleting, modifying, or varying functionality, capacity, or platform. The JCAF frame-
work is designed to be highly modifiable and extensible at runtime – not at design and
compile time as many other frameworks are. JCAF services, monitors, actuators, and
clients can be added to the JCAF runtime infrastructure while running. The design prin-
ciple of deploying a federated set of cooperating context services enables users of the
framework to add special designed context services and register them in the infrastruc-
ture. For example, in a hospital where a set of JCAF context services may run as the



100 J.E. Bardram

core context-awareness infrastructure, a new context service responsible for context-
aware application in the emergency department can be deployed at a later stage. This
specialized ‘emergency context service’ serves context-aware application in the emer-
gency department while cooperating and exchanging context information with the rest
of the context services running in the hospital.

Many context-aware applications may only be interested in being notified about
changes of context. Therefore, JCAF is based on an event-based infrastructure [9, 12],
thereby ensuring a decoupling in space, time, and thread synchronization. The context
service in JCAF has a publish-subscribe-notify interface notifying subscribers about
changes in context. For example, a context-aware application showing relevant medical
images during surgery would subscribe to changes in the context of an operating theatre.
This application would be notified on the enterance of the patient and the surgeon, and
is able to display appropiate images for the patient tailored to the preferences of the
surgeon.

Context data, used e.g. in a medical setting, should be protected, subject to access
control, and not revealed to unauthorized clients [7, 21]. Furthermore, establishing the
credibility and origin of context information is key for some type of context-aware
applications. Such cases may require an authentication mechanism for clients, and even
a secure communication link between clients and services. However, in line with [20]
we argue for supporting adequate security in a ubicomp environment. Hence, eaves-
dropping sensor information like temperature and location is seldom a major security
issue – often it is easier to measure the temperature than listening in on low-power radio
communication. JCAF supports a minimal set of default set of security mechanisms
for access control and authentication. Additional support for security, authentication,
access control, and encryption can be added to the JCAF framework by using the Java
Security API.

2.3 Minimal Java API

The main goal of the programming model of JCAF is to provide the programmer with
a framework that is extensible in a way that it helps him or her implement application-
specific functionality by extending the JCAF framework. Hence, in the design of JCAF
we have put special emphasis on providing only a minimal set of interfaces and classes
that provides generic support for context modeling and handling while ensuring that
these interfaces and classes (constructs of the programming model) are as expressive
as possible. As we shall discuss in section 6 the constructs of the JCAF programming
model have evolved over long period of time and incorporated experience in developing
several types of context-aware applications for different settings.

Furthermore, applications are concerned with the quality of context information,
including uncertainty [16, 24]. Therefore, the JCAF programming model encourage
the programmer of context-aware applications to consider saving, revealing, and us-
ing quality measures for context information. Hence, the JCAF interface requires the
programmer to implement methods on context information quality. For example, a clin-
ical application trying to find relevant patient data during an operation might suggest
to show more than one piece of medical data, if the sensing uncertainty is too high.
Quality measures for context information are preserved from measurement, through
any transformation to its use by applications.



The Java Context Awareness Framework (JCAF) 101

3 The JCAF Runtime Infrastructure

The JCAF Runtime Infrastructure is illustrated in figure 1. Figure 1a illustrates a deploy-
ment situation with a range of Context Services which are connected in a peer-to-peer
setup, each responsible for handling context in a specific environment like the operating
room. A network of services can cooperate by querying each other for context informa-
tion. All connections in figure 1 are remote and hence all components in JCAF can be
distributed in a network.

3.1 Context Client Layer

Context Clients are the context-aware applications using the JCAF infrastructure by
accessing one or more context services. Clients can access entities and their context;
they can add or remove context information (and hence work as a context monitor, see
section 3.3); they can add, query for, and use context transformers; and they can ad-
just the topology of the context service network. Clients can access entities and their
context information in two ways. Either following a request-response schema, request-
ing entities and their context data, or by subscribing as an Entity Listener, listening for
changes to specific entities. JCAF also supports type-based subscriptions of entity lis-
teners, allowing a client to subscribe to changes to all entities of a specific type, e.g. pa-
tients. Context clients and entity listeners can access and subscribe to several context
services.

Fig. 1. The Runtime Architecture of the JCAF Framework. a – An example of a deployment
situation of a set of context monitors, context actuators, and a set of cooperating context services.
b – Details of a context service



102 J.E. Bardram

3.2 Context Service Layer

Figure 1b illustrates the details of a Context Service, which is a long-lived service pro-
cess analog to a Web Service, for example. An Entity with its Context information is
managed by the service’s Entity Container. An entity is a small Java program that runs
within the Context Service and responds to changes in its context. The life cycle of an
entity is controlled by the container in which the entity has been added. The entity con-
tainer handles subscribers to context events and notifies relevant clients on changes to
entities. An entity, its context and its life cycle are further discussed in section 4.2.

The Entity components in a Context Service work together with other components to
accomplish their tasks. This is accomplished via the Entity Environment, which all En-
tities have a handle to when executing. The Entity Environment provides access to gen-
eral resources like initialization parameters and logging facilities, and to user-specific
resources, like databases, RMI stubs, shared objects, and other resources which are
maintained across entities. Furthermore, the Entity Environment holds Context Trans-
formers, which are small application-specific Java programs that a developer can write
and add to the Transformer Repository. The Transformer Repository can be queried for
appropriate transformers on runtime.

Access to a Context Service is controlled through the Access Control component,
which ensures correct authentication of client requests. This component consists basi-
cally of two parts, namely an access control list, specifying what the requesting clients
can access, and mechanisms for authenticating the client.

3.3 Context Monitor and Actuator Layer

There are two special kinds of context clients: the Context Monitor and the Context
Actuator. A monitor is a client specially designed for acquiring context information in
the environment by cooperating with some kind of sensor equipment, and associate it
properly with an entity. A context actuator is a client designed to work together with
one or more actuators to affect or ‘change’ the context.

The JCAF framework can handle the acquisition and transformation of context in-
formation in two modes. In the asynchronous mode monitors constantly deliver con-
text information to one or more context services, which then can notify listeners or be
queried. In the synchronous mode, the monitor is asked to sense context information.
This is done when the context information for an entity is requested by a client. In this
case, monitors associated with this context information are asked to refresh their con-
text information. A user’s current activity according to his calendar is an example where
the activity monitor asks the calendar about the activity at the time of calling.

The interaction diagram in figure 2 illustrates the dynamics of this synchronous
mode. First, a monitor registers itself at a context service by indicating what type
of context information it can provide. When a client, who is an Entity Listener, is
requesting context information by using the getContext() method, then relevant
registered context monitors are called to acquire context information by calling their
getContextItem() method. To avoid deadlocks (e.g. if the calendar system does
not answer), the getContext() method starts a separate thread to handle monitors
and returns immediately with whatever context information is available currently. When
the Context Monitors starts reporting back (which might take some time), then clients



The Java Context Awareness Framework (JCAF) 103

Fig. 2. Interaction Diagram for asynchronous context acqucition using Context Monitors regis-
tered at the Context Service

are notified using the contextChanged() method in the EntityListener in-
terface.

Similarly, Context actuators can register at a context service by specifying what type
of context items it is an actuator for. When a context item is changed in the context ser-
vice (i.e. the contextChanged() method is triggered), then all context actuators
registered as interested in this type of context item are notified with information about
this new context information. This can, for example, be used to keep context informa-
tion synchronized across a distributed network of JCAF components and applications.

4 The JCAF Programming Model

The JCAF programming model enables the programmer to create context-aware ap-
plications that are deployable in the JCAF infrastructure. The infrastructure both en-
ables the programming model and makes use of it. The most important parts of the
programming model is how to use the API of the context services, how to model con-
text information for entities, and how to make use of the event-based infrastructure of
JCAF.

4.1 The Context Service API

The ContextService interface has methods for adding, removing, getting and set-
ting entities. The getEntity() method returns the service’s copy of an entity object,
whereas the lookupEntity() method contacts other known services trying to lo-
cate the entity object. The lookupEntity() method takes as arguments the id of
the entity to look for, the maximum number of allowed hops between services in the
search, and an DiscoveryListener which is called when the entity is discovered.
The method is non-blocking and relies on notifying the discovery listener if a matching
entity is found.

Embedded in the context service’s API are the APIs for the
TransformerRepository, containing methods for adding and getting trans-



104 J.E. Bardram

formers, and the ContextClientHandler interface, containing methods for
adding and authenticating a clients, including context monitors and actuators. The
EntityListenerHandler interface contains methods for adding, removing, and
accessing entity listeners (see section 4.3). The EntityEnvironment is shared by
all entities in a service and has methods for setting and getting attributes, accessing
information about the local context service, and accessing the transformer repository.

4.2 Modelling Entity and Context

Context modeling in JCAF is done by making object-oriented models in Java. The
core modeling interfaces provided by JCAF are the Entity, Context, Relation,
and ContextItem interfaces. JCAF provides default implementations of these core
interfaces. For example the GenericEntity class implements the Entity interface
and can be used to create concrete entities using specialization. These are illustrated in
figure 3.

Fig. 3. The UML model of an Entity with a Context containing a range of ContextItems,
each having a certain Relation to the context. Note that the an entity is also a context item

Persons, places, things, patients, beds, pill containers, etc. are examples of entities.
A Hospital Context and a Office Context, each knowing specific aspects about a hos-
pital and an office, respectively, are examples of context. Physical location, activity
as revealed by a user’s calendar, and the status of an operation are examples of con-
text items. Examples of relations are ‘using’ or ‘located’. Hence, we can model that
‘personX is located in room.333’ where personX is the Entity, located is the rela-
tion, and room.333 is the context item.

The ContextItem interface is shown below. It is important to be able to judge
the quality of a context item [16]. For example, how accurate is the location estimate.
The getAccuracy() method is used for this purpose. Implementations of a context
items returns a probability between zero and one. The isSecure() method is used to



The Java Context Awareness Framework (JCAF) 105

establish whether this context information originates from a trusted and authenticated
context monitor.

public interface ContextItem extends Serializable {
public long getSequenceID();
public boolean isSecure();
public double getAccuracy();
public boolean equals(ContextItem anotherItem);

}

A subtle, but rather important aspect of entities is that they themselves are context
items. Hence, in JCAF it is possible to add an entity as a context item for another entity.
For example, in a Bang and Olufsen Home entertainment project we needed to model
that a person is using a certain A/V equipment, like a TV or Radio. In JCAF both
persons as well as the A/V equipment were modeled as entities and it was hence easy to
model that “personA was using TVx” by adding TVx to the context of personA with
a using relation.

4.3 EntityListeners and ContextEvent

The event-based architecture of JCAF is supported by the EntityListener inter-
face and the ContextEvent class in the programming model. By implementing the
EntityListener interface a client can subscribe to changes in context for an en-
tity. Entity listeners can subscribe to changes in a specific entity or can subscribe to
changes in a specific type of entities. For example, an entity listener can listen to all
person entities. Clients interested in listening to context changes can implement the
EntityListener interface shown below.

public interface EntityListener {
public void contextChanged(ContextEvent event);

}

Entities themselves are aware of changes to their context by implementing the
EntityListener interface (see figure 3). The central processing part of an en-
tity is hence its contextChanged() method. This method is guaranteed to
be called by the entity container whenever this entity’s context is changed. This
is a very powerful way to implement functionality handling changes in the en-
tity’s context and thereby create logic, which translates such changes into meaning-
ful activities for users of the application. The ContextEvent object is a stan-
dard java.util.EventObject that gives access to the entity and the con-
text item, which caused the change. A RemoteEntityListener interface ex-
ists as well, enabling clients to listen on changes to Entities in a remote con-
text service process. This remote entity listener interface is also used across con-
text services, thereby enabling one context service to listen to changes on entities
in another context service. In the example where a special ‘operating context ser-
vice’ is deployed in a hospital, this context service would listen to changes con-
cerning e.g. persons who are in the operating room. Hence, in the AWARE frame-
work developed on top of JCAF (see section 6.1), this operation context service
would listen to changes to the context of the operating surgeon and may take ap-
propriate actions, like revealing that he is busy operating or forward emergency calls
only.



106 J.E. Bardram

5 Implementation and Ongoing Work

JCAF is currently in a version 1.5 and is implemented using J2SE 1.4. The core func-
tionality of JCAF as described above is implemented and working. Remote communi-
cation is currently implemented using Java RMI. A Context Service is looked up using
the Java RMI Registry and accessed using RMI invocation. The lookup of entities in
associated context services (using the lookupEntity() method) is also done using
RMI. A configuration file contains information about known peers. Hence, there is no
automatic discovery of other context services.

Security is implemented using an authentication mechanism based on a digital sig-
nature using the Java Authentication and Authorization Service (JAAS), which is a part
of J2SE. This is currently used for context clients (including context monitors and ac-
tuators) and the authentication mechanism is part of the ContextClientHandler
interface. Context information from authenticated monitors is labeled ’secure’. This se-
curity mechanism could be extended to include other types of context clients, like entity
listeners and transformers added to the JCAF while running. Finally, security might be
enhanced by using encrypted communication between a context service and a client, es-
pecially if sensitive (medical) data is transmitted. However, as discussed in section 2 we
are very cautious about providing ‘adequate security’ and we are not sure if these latter
security mechanisms are necessary. As for access control, a simple role-based access
control mechanism is used currently: monitors can add context items (secure monitors
can add secure items), and clients can query context information. From a privacy per-
spective, this access control mechanism is clearly a coarse-grained mechanism and we
plan to extend it to real access control lists, which have a fine-grained specification of
the rights of each client.

The projects that have been using JCAF have implemented a range of monitors for
monitoring location based on RFID, WLAN, Bluetooth, and IrDA. Furthermore, mon-
itors for monitoring activity in an online calendar and status information in an Instance
Messaging system have been implemented. JCAF also contains several implementations
of common entities (person, place, thing) and context items (location, status, activity,
network capacity) as well as generic implementations of context clients and monitors.

6 Evaluation

A central research question is how to evaluate a programming framework. Our ap-
proach has been to use the JCAF framework in different situations – in different types
of projects, including students and research projects, and in different types of applica-
tion areas and for different types of applications within each area. Table 1 contains an
overview of these projects. In this section we will discuss how JCAF was used in two
of these projects: Proximity-Based User Authentication and the AWARE Framework.
Both of these projects highlight different parts of the JCAF framework1. Furthermore,

1 Each of these projects is motivated in our work on developing pervasive computer technology
for the hospital of the future [2]. The design and evaluation of this technology have been
done in cooperation with a range of clinicians, applying user-centered design methods like
observations, design workshops, and prototyping.



The Java Context Awareness Framework (JCAF) 107

Table 1. The use of JCAF in different projects, ranging from research projects (R) to students
projects (S) in class

Project Title Type Description

Proximity-Based R Enables a user to log in to a computer by
User Authentication physically approaching it.
Context-Aware R A hospital bed that adjust itself and react
Hospital Bed according to entities in its physical environment,

like patient, medicine, and medical equipment.
Bang & Olufsen S Using context-awareness to make B&O
AV Home AV appliances adjust themselves according

to the location of people and things.
AWARE R A system that distributes context information
Framework about users, thereby facilitating a social, peripheral

awareness, which helps users coordinate their cooperation.
Wearable Computers for S A wearable system for emergency workers,
Emergency Personnel like ambulance personnel. Helps them react to changes

in the work context.

in the end of this section we will discuss the feedback from programmers who have
been using JCAF.

6.1 The AWARE Framework for Social Awareness

When people need to engage in a cooperative effort there is a risk of interrupting each
other. For example, when calling people using a mobile phone or accessing them di-
rectly in their offices. People hence often tries to maintain a ‘social awareness’ of
each other in order to align their cooperation to the work context of their colleagues.
This social awareness relies on having access to the work context and when people
are not co-located this access can be mediated using networked computers (including
very small portable ones). The main purpose of the AWARE platform is to provide
such social awareness by notifying and informing users about the working context of
their fellow colleagues [4]. For this purpose JCAF is used to monitor the context of
people.

Figure 4 shows the deployment of services, including context services, in the
AWARE architecture. It illustrates the federation of JCAF context services into special-
purpose context services. The AwareContextService in the AWARE architecture
is responsible for managing context information for the users of the AWARE sys-
tem. By using the lookup method and registrering as a (remote) entity listener, this
AwareContextService replicates context information for users residing in other
context services and maintains context information that is specific to the AWARE
architecture. In our current implementation this includes location, status, and calen-
dar information. In a typical deployment (as illustrated in figure 4), status monitors
and calendar monitors add status and calendar context information directly to the
AwareContextService, whereas location information is available in other context
services in the network of federated JCAF context services.



108 J.E. Bardram

Fig. 4. The services in the AWARE Architecture, including the AwareContextService re-
sponsible for managing context information by cooperating with other Context Services

We have built two types of AWARE clients – a simple browser interface where a
user can see context information about his fellow colleagues, and the AWAREPhone,
which is a mobile phone client. The AWAREPhone implements a location monitor,
using its built-in Bluetooth capabilities. Via the list of contact persons, a user can see
the working context of a colleague and based on this information choose an appropriate
cooperation strategy, like calling, sending a message, or not to disturb.

6.2 Proximity-Based User Authentication

Proximity-based user authentication [5] is a mechanism that allows users to log in to
a computer just by approaching it and start using it. The system consists of two inde-
pendent mechanisms. The first mechanism is a personal token with enough processing
power to do public key cryptography. This token can be some jewelry (e.g. a ring, neck-
lace, or earring), or it can be a personal pen used on the various touch screen embedded
in a hospital. Currently we are using Java Smartcard technology as the personal to-
ken. When the user approaches a computer, this token can authenticate the user using
public key cryptography. This is however not secure enough for use in hospitals – this
token might be lost or stolen. Hence, when using e.g. smartcards in hospitals today,
users are also required to enter a password or a PIN code. To avoid this, the second
mechanism in our setup is to track the user’s location via the context-awareness infras-
tructure. If the infrastructure can verify the location of the user in the same place as
the token (and hence the computer) s/he is authorized. The location of the user can ap-
ply various methods based on e.g. something the user wear or trying to recognize the
voice. Currently we monitor RFID tags woven into the clinicians whitecoats (see [5]
for details).



The Java Context Awareness Framework (JCAF) 109

In this application of the JCAF framework, two aspects become important. The first
one is the security of the framework. If the context-awareness framework is used to
verify the location of the users, it is of crucial importance that any adversary trying
to gain illegal access cannot send a false “I’m here” message to the systems. Hence,
we need to trust and hence authenticate the context monitors reporting on the location
of users. A context monitor is authenticated to a context service using a public-key
infrastructure. An example of a secure context monitor is shown below:

The only way to access a secure context service is through the authenticate method.
When the setContextItem() method on the secure service is used, the context
item is marked as secure. Hence, a client using this context information can ask if this
item is secure by using the isSecure() method on the ContextItem
interface.

The second aspect concerns the quality of the context data. It is of equal impor-
tance that the user authentication mechanism can judge the quality of the location data
and decide whether the quality is sufficient to trust as a verification of the location of
the user. Hence, the aggregation of quality (or uncertainty) measures is important in
this application of context-aware computing, and thus relies on the getAccuracy()
methods of a Context Item. In our current implementation of the Location context
item, accuracy decreases by 1% pr. minute since the last measurement. In the User Au-
thentication protocol there is a threshold, which determines how accurate the location
estimation needs to be to verify the user.

6.3 Discussion

After each project we interviewed programmers about their thoughts on using JCAF.
These interviews were often informal and were typically done while going through the
code of their applications to see how they were using JCAF. Some of the things that

public class SecureLocationMonitor extends AbstractContextClient {

SecureContextService scs

public SecureLocationMonitor() {
super();

try {
PrivateKey key = ... // holds this client’s private key
byte[] data = this.getClass().getName().getBytes();
Signature sig = Signature.getInstance("DSA");
sig.initSign(key);
sig.update(data);
byte[] signature = sig.sign();

// tries to authenticate at the server.
scs = getContextService().authenticate(this.getClass().getName(), data, signature);

// If successful, then a secure context service is returned.
if (scs!= null) {
// Now use this secure service to provide some location information
scs.setContextItem("1732745-3872",new Location("loc://daimi.au.dk/hopper.333"));

}
} catch (Exception e) {...}

}
}



110 J.E. Bardram

was mostly appreciated in JCAF includes its event-based architecture, its modifiability,
and its Java-based programming model.

The event-based architecture made programmers develop context-aware applica-
tions that were very loosely coupled and were reactive to changes in context. This style
of application design and implementation was conceived by all programmers as a cen-
tral benefit from JCAF.

The extensibility of the JCAF infrastructure and programming model was also highly
appreciated by all programmers. The support for adding and removing context services,
monitors, and actuators in a running infrastructure was used extensively. Often the event
mechanism in JCAF was used to develop and deploy new modules in the infrastructure.
For example, in the Bang and Olufsen project a ‘Context-Aware Triggering’ component
were added, which were notified about changes in the environment and could trigger
certain actions. For example, disallow children to watch PG-rated 16 movies on a B&O
television. In another project, a history module was added. This module was listening
in on relevant entities and a history update were triggered when an entity changed. This
way of implementing new components as plug-ins to the existing infrastructure worked
out well. In addition, such new components were working asynchronously with the rest
of the framework by having the history or other modules run in their own threads (po-
tentially on separate host machines), thereby not adding significant response latency to
the rest of JCAF.

As for extending the programming model, all the projects implemented new types
of entities, context, relations, and context items, which was a simple task for most pro-
grammers. Also new kinds of transformers were made and deployed. For example, filter
transformers in the B&O project.

The Java programming model was also appreciated by most programmers. It was
seen as simple and it was easy to start using. Also the programming model of JCAF
conforms to the programming models of many other Java frameworks and experienced
Java programmers hence find JCAF easy to understand and use. The Java programming
model also helps integrate JCAF in other Java frameworks, like the Java Authentication
and Authorization Service (JAAS) or Jini.

Some of the things that the programmers found problematic concern the deployment
of context services in a network topology. To establish how to divide the infrastructure
into different cooperating services was not always trivial. Furthermore, problems arose
when an entity, like a person, had a representation and context information, which were
distributed across several services. This introduced synchronization problems, which
could be solved by having the distributed version of the entity in the different services
subscribed to changes on each other. However, this still introduced some headache. A
related problem was that information relevant for an entity – like a patients name and
id number – often was in other systems, like a hospital information system. Hence,
synchronizing such data was also problematic. This is, however, a more general soft-
ware engineering challenges in many distributed systems and is hence not specific to
JCAF.

Some programmers also found the modeling of context information in Java to be
an overhead compared to just putting this information in a relational database and use
SQL queries and triggers. Relational databases are clearly inherently good at handling



The Java Context Awareness Framework (JCAF) 111

relational data on the type of entity-relationships. However, many programmers also
appriciated the pure-Java approach in JCAF and we have decided to stay within this
model. We are, however, looking into how to address some of these challenges in the
modeling capabilities of JCAF.

7 Related Work

As discussed in section 2, JCAF tries to incorporate the contributions from a wide range
of related work within software frameworks for context-awareness. We shall hence con-
centrate on work specifically related to the core design principles in JCAF as described
in section 2.

Creating support for context-awareness by having one server or infrastructure com-
ponent is common in many context-awareness systems, like Schilit’s mobile application
customization system [25], the Contextual Information Service (CIS) [23], the Trivial
Context System (TCoS) [17], and the Secure Context Service (SCS) [7, 21]. All of these
act as the middleware that acquires raw contextual information from sensors and pro-
vides interpreted context to applications via a standard API. They can also monitor
the context changes and send events to interested applications. This approach is of-
ten the simplest and most efficient way to ensure data integrity, aggregation, filtering,
enrichment, etc. From a technical point of view, the use of one central server has its
drawbacks in terms of having a single point of failure, scalability issues, and exten-
sibility concerns. From a functional point of view, the collection of everything in one
place makes a context-aware infrastructure hard to maintain while it grows in size and
complexity. There is no way to separate responsibilities and concerns.

More distributed architectures have been proposed. For example, the Context
Toolkit [11] has a range of loosely coupled distributed components and the architecture
proposed by Spreitzer and Theimer [26] is based on multicasting context information to
all members of a domain’s multicast group. The Context Toolkit is distributed on a very
low level of details and there is no way of collecting related context data and services
into logical bundles. The disadvantage of multi-casting context information around is
increasing computation and communication thereby paying a scalability penalty.

The federating context services approach in JCAF in a hybrid between having one
server or a totally distributed infrastructure. This design principle is based on our dif-
ferent application areas. One the one side, the JCAF framework enables us to have a
context-awareness infrastructure deploying in an organization (e.g. a hospital) where
applications can discover and utilize this infrastructure when needed. On the other
hand, the JCAF framework enables us to partition our infrastructure into separate but
cooperating context services, each responsible for acquiring, handling, different kind
of context information often in different localized settings. Hence, there is support for
separation of concerns.

Many context-awareness systems incorporate some notification functionality. In-
frastructures based on relational databases (e.g. [14, 17]) often use the triggering mecha-
nisms in such databases and e.g. the Context Toolkit [10] supports subscriptions to state
changes in a Context Widget. These approaches require their own specification lan-
guage (e.g. in XML) to specify a subscription and only support subscribing for changes



112 J.E. Bardram

in low-level context information represented as native types are supported. In contrast to
these approaches where subscriptions, notifications, and events are represented outside
the programming environment, the event mechanism in JCAF is a part of the program-
ming model. Hence, Java APIs for subscription and events exist and can be extended.
The Rome system developed at Stanford [18] is based on the concept of a context trig-
ger, much like context events in JCAF. However, Rome’s decentralized evaluation of
triggers embedded in devices does not allow context sharing and requires the device
to have the capability to sense and process all of the necessary raw contextual informa-
tion. In JCAF entities residing in a context service are notified on context events and can
access each other locally and look up remotely located entities, without involving any
clients. Hence, the JCAF event structure is not only used for client notification but also
for triggering actions in the entities residing in the context services’ entity container.

Despite the importance of security and privacy in ubiquitous computing [20] lit-
tle work have been done here, with the Secure Context Service (SCS) [7, 21] as a
notable exception. However, SCS is based on a Role-Based Access Control (RBAC)
mechanism and is a closed system where the identity of all clients must be known to
the system a priori. JCAF, on the other hand, supports a more relaxed security strat-
egy where unknown context clients can access and provide context information, but
this context information is labeled insecure. This strategy is more aligned with the ba-
sic purpose of JCAF, i.e. to provide the basic building blocks for experimenting with
context-awareness.

Even though Java has been used as a programming language in many context-
awareness systems, there is to our knowledge no Java Framework or API available
for context-awareness. As a toolkit to be programmed in Java, the Context Toolkit [11]
is what come closest. However, in the Context Toolkit, Java’s basic abstractions for
TCP/IP networking and hashtables of string-based context information is used. There
is no object-oriented modeling of context information, nor any use of Java serializa-
tion of complex context data or the use of Java RMI. JCAF is an attempt to suggest
a Java API for context-awareness, analogue to the APIs for e.g. service discovery in
JINI. Some may argue that the use of Java in itself is not a virtue of context-awareness
infrastructure that has to exist in a heterogeneous execution and application environ-
ment. However, we would argue – as also supported by our users (i.e. the programmers
using JCAF) – that a pure Java-based framework is valuable because there is no need
for dealing with special context modeling or markup languages.

8 Conclusion

Runtime infrastructures and programming models for creating context-aware applica-
tions and services are central in pervasive computing. This paper has presented the Java
Context-Awareness Framework (JCAF), including its core design principles, its runtime
infrastructure, and its programming model. JCAF has been used and hence evaluated
in several research and student projects and we presented in some detail how JCAF
was used in two projects in our research on creating ubiquitous computing support in
a hospital setting. We discussed our experience from these two projects and more gen-
eral experience from interviewing programmer, who have been using JCAF in different



The Java Context Awareness Framework (JCAF) 113

projects. When looking at related work, JCAF shares similarities with much of the re-
search already done within creating generic support for the creation of context-aware
applications. Distinct features of JCAF are, however, its support for distributed cooper-
ating context services, its event-based middleware architecture, its support for a relaxed
security model for authenticating context clients, and its Java-based modeling of context
information.

The core feature of a framework is its extensibility and support for being used in
several applications areas [19]. In our design and use of JCAF we have demonstrated
that it is extensible both with respect to its runtime infrastructure and to its programming
model. Hence, we believe that JCAF provides a comprehensive set of Java APIs and
generic implementations which allow researchers, students, and programmers to start
extending the framework and begin experimenting with context-awareness as a concept
and as a technology. More information on JCAF, including a downloadable release, is
available at http://www.daimi.au.dk/˜bardram/jcaf.

Acknowledgments

The Danish Center of Information Technology (CIT) and ISIS Katrinebjerg funded this
research. Henrik Bærbak Christensen was much involved in the early discussion on
context-awareness in hospitals.

References

1. G. D. Abowd. Software engineering issues for ubiquitous computing. In Proceedings of
the 21st international conference on Software engineering, pages 75–84. IEEE Computer
Society Press, 1999.

2. J. E. Bardram. Hospitals of the Future – Ubiquitous Computing support for Medical
Work in Hospitals. In J. E. Bardram, I. Korhonen, A. Mihailidis, and D. Wan, edi-
tors, UbiHealth 2003: The 2nd International Workshop on Ubiquitous Computing for Per-
vasive Healthcare Applications. http://www.pervasivehealthcare.dk/ubicomp2003, Seattle,
WA, USA, Oct. 2003.

3. J. E. Bardram. Applications of ContextAware Computing in Hospital Work – Examples and
Design Principles. In Proceedings of the 2004 ACM Symposium on Applied Computing,
pages 1574–1579. ACM Press, 2004.

4. J. E. Bardram and T. R. Hansen. The AWARE architecture: supporting context-mediated
social awareness in mobile cooperation. In Proceedings of the 2004 ACM conference on
Computer supported cooperative work, pages 192–201. ACM Press, 2004.

5. J. E. Bardram, R. E. Kjær, and M. Ø. Pedersen. Context-Aware User Authentication –
Supporting Proximity-Based Login in Pervasive Computing. In A. Dey, J. McCarthy, and
A. Schmidt, editors, Proceedings of UbiComp 2003, volume 2864 of Lecture Notes in Com-
puter Science, pages 107–123, Seattle, Washington, USA, Oct. 2003. Springer Verlag.

6. L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison-Wesley,
second edition, 2003.

7. C. Bisdikian, J. Christensen, J. Davis, II, M. R. Ebling, G. Hunt, W. Jerome, H. Lei, S. Maes,
and D. Sow. Enabling location-based applications. In Proceedings of the 1st international
workshop on Mobile commerce, pages 38–42. ACM Press, 2001.



114 J.E. Bardram

8. L. Capra, W. Emmerich, and C. Mascolo. CARISMA: Context-Aware Reflective mIddleware
System for Mobile Applications. IEEE Transactions on Software Engineering, 29(10):921–
945, Oct. 2003.

9. G. Cugola, E. D. Nitto, and A. Fuggetta. Exploiting an event-based infrastructure to de-
velop complex distributed systems. In Proceedings of the 20th international conference on
Software engineering, pages 261–270. IEEE Computer Society, 1998.

10. A. Dey. Providing Architectural Support for Building Context-Aware Applications. PhD
thesis, Department of Computer Science, Georgia Institute of Technology, USA, 2000.

11. A. Dey, G. D. Abowd, and D. Salber. A conceptual framework and a toolkit for supporting
the rapid prototyping of context-aware applications. Human-Computer Interaction, 16:97–
166, 2001.

12. P. T. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces of pub-
lish/subscribe. ACM Computing Surveys, 35(2):114–131, June 2003.

13. A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster. The anatomy of a context-aware
application. Wireless Networks, 8(2/3):187–197, 2002.

14. K. Henricksen and J. Indulska. A software engineering framework for context-aware perva-
sive computing. In Proc. PerCom’04. IEEE, 2004.

15. K. Henricksen, J. Indulska, and A. Rakotonirainy. Modeling context information in pervasive
computing systems. In M. Naghshineh and F. Mattern, editors, Proceedings of Pervasive
2002: Pervasive Computing : First International Conference, volume 2414 of Lecture Notes
in Computer Science, pages 167–180, Zürich, Switzerland, Aug. 2002. Springer Verlag.

16. J. Hightower, B. Brumitt, and G. Borriello. The location stack: A layered model for location
in ubiquitous computing. In Proceedings of the Fourth IEEE Workshop on Mobile Computing
Systems and Applications (WMCSA’02). IEEE Computer Society Press, 2002.

17. F. Hohl, L. Mehrmann, and A. Hamdan. A context system for a mobile service platform. In
H. Schmeck, T. Ungerer, and L. Wolf, editors, Proceedings of ARCS 2002: Trends in Network
and Pervasive Computing, volume 2299 of Lecture Notes in Computer Science, pages 21–33,
Karslruhe, Germany, Mar. 2002. Springer Verlag.

18. A. C. Huang, B. C. Ling, S. Ponnekanti, and A. Fox. Pervasive computing: What is it good
for? In In Proceedings of the ACM International Workshop on Data Engineering for Wireless
and Mobile Access, pages 84–91. ACM Press, Aug. 1999.

19. R. Johnson. Documenting frameworks using patterns. In OOPSLA ´92, pages 63–76, Van-
couver, Canada, 1992. ACM.

20. M. Langheinrich. Privacy by Design – Principles of Privacy-Aware Ubiquitous Systems. In
G. D. Abowd, B. Brumitt, and S. Shafer, editors, Proceedings of Ubicomp 2001: Ubiquitous
Computing, volume 2201 of Lecture Notes in Computer Science, pages 273–291, Atlanta,
Georgia, USA, Sept. 2001. Springer Verlag.

21. H. Lei, D. M. Sow, I. John S. Davis, G. Banavar, and M. R. Ebling. The design and ap-
plications of a context service. ACM SIGMOBILE Mobile Computing and Communications
Review, 6(4):45–55, 2002.

22. T. Moran and P. Dourish. Introduction to this speical issue on context-aware computing.
Human-Computer Interaction, 16:87–95, 2001.

23. J. Pascoe. Adding generic contextual capabilities to wearable computers. In In Proceed-
ings of the Second International Symposium on Wearable Computers, pages 129–138. IEEE
Computer Society Press, Oct. 1998.

24. M. Román, C. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell, and K. Nahrstedt. A
Middleware Infrastructure for Active Spaces. IEEE Pervasive Computing, 1(4):74–83, Oct.
2002.

25. B. N. Schilit, M. M. Theimer, and B. B. Welch. Customizing mobile applications. In Pro-
ceedings of USENIX Mobile and Location-Independent Computing Symposium, pages 129–
138. USENIX Association, Aug. 1993.



The Java Context Awareness Framework (JCAF) 115

26. M. Spreitzer and M. Theimer. Providing location information in a ubiquitous computing
environment (panel session). In Proceedings of the fourteenth ACM symposium on Operating
systems principles, pages 270–283. ACM Press, 1993.

27. R. Want, B. N. Schilit, N. I. Adams, R. Gold, K. Petersen, D. Goldberg, J. R. Ellis, and
M. Weiser. An overview of the parctab ubiquitous computing environment. IEEE Personal
Communications, 2(6):28–43, 1995.

28. M. Weiser. The Computer for the 21st Century. Scientific American, 265(3):66–75, Septem-
ber 1991.


	Introduction
	Motivation and Design
	Federated Context Services
	Modifiable, Event-Based and Secure Architecture
	Minimal Java API

	The JCAF Runtime Infrastructure
	Context Client Layer
	Context Service Layer
	Context Monitor and Actuator Layer

	The JCAF Programming Model
	The Context Service API
	Modelling Entity and Context
	EntityListeners and ContextEvent

	Implementation and Ongoing Work
	Evaluation
	The AWARE Framework for Social Awareness
	Proximity-Based User Authentication
	Discussion

	Related Work
	Conclusion

